Marine scientists from Warnemünde succeed in deciphering the microbial world of the Baltic Sea

In a comprehensive measuring campaign, the microbiologists Daniel Herlemann, Matthias Labrenz and Klaus Jürgens, from the Leibniz Institute for Baltic Sea Research in Warnemünde, together with Swedish colleagues have succeeded in sampling microorganisms from the entire Baltic Sea, from the southwestern marine Skagerrag to the northern freshwaters of the Bothnian Bay. The respective bacterial communities were analyzed by means of state-of-the-art “high-throughput sequencing technologies.” Thus, the Baltic Sea is the first sea in which all of the microbial inhabitants have been completely inventoried.

The results, which were published very recently, are astonishing: unlike the Baltic Sea's fauna and flora, its bacteria are unimpressed by the varying salinity that prevails in the Baltic. Indeed, while many organisms avoid the intermediate salinities (between freshwater and saltwater) that are characteristic of the central Baltic—which explains the minimal diversity under brackish water conditions—bacteria clearly differ in that under these conditions they show a constant species diversity.

Similarly, although typical marine or limnic bacterial assemblages become less diverse beyond the fully marine or limnic margins of the Baltic Sea, bacterial diversity remains high in the brackish water of the Baltic Proper because of the presence of species adapted to these conditions.

Among these, one bacterium was discovered that seems to thrive extraordinarily well in the Baltic Proper: this remarkably abundant organism belongs to the group of Verrucomicrobia, which was previously mainly found in lakes and soils. The function of this newly discovered and highly abundant bacterium is, at the moment, obscure. Moreover, in addition to the lack of cultivated representatives, specific sequences of the closest related isolate of the Verrucomicrobia group and those of the newly discovered organism differ by 12%.

The results support the notion that bacteria are well-equipped to cope with the challenging transitional area between freshwater and saltwater in the Baltic Sea and that, in contrast to higher organisms, there is no decline in their number of species under these conditions. Thus, the rapid and flexible adaptability of bacteria enables them to occupy ecological niches to which higher organisms have only limited access.

The results were published in the article: “Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea” Daniel PR Herlemann, Matthias Labrenz, Klaus Jürgens, Stefan Bertilsson, Joanna J Waniek and Anders F Andersson. The ISME Journal, (published online 7 April 2011) | doi:10.1038/ismej.2011.41

Contact:
Dr. Daniel Herlemann, +49 381 / 5197 209
PD Dr. Matthias Labrenz, +49 381 / 5197 378
Prof. Dr. Klaus Jürgens, +49 381 / 5197 250
Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde
or
Dr. Barbara Hentzsch, +49 381 / 5197 102
Directorate / Public Relation, Leibniz Institute for Baltic Sea Research Warnemünde

The IOW is member of the Leibniz Association, a network of 87 scientifically, legally and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic-and thematically-oriented research and offer scientific services of national significance while striving to provide scientific solutions to major social challenges.

The 16,800 employees of the Leibniz Institutes include 7,800 academics, with 3,300 junior scientists. One indication of the Leibniz Institutes' strong competitiveness and excellence is the 330 million Euros allocated to them from third-party funds. The total budget of all Leibniz Institutes amounts to more than 1.4 billion Euros.

Leibniz Institutes contribute to clusters of excellence in fields such as mathematics, optic technologies, materials research, medicine, climate and environmental research, and bio- and nanotechnology as well as the humanities, economics, and social sciences. They foster close co-operations with universities, industry, and other research institutes, both in Germany and abroad. The Leibniz Association has developed a comprehensive system of quality management in which, at regular intervals, independent experts assess every institute as part of the Association's unique peer review evaluation process.

Media Contact

Dr. Barbara Hentzsch idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors