Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine algae bloom-derived biotoxins alter development of zooplankton and ocean food web

25.10.2018

Researchers from the University of Barcelona in collaboration with a team from the Zoological Station Anton Dohrn (Italy) have analysed the impact of diatom algae in the development of Oikopleura dioica (O. Dioica), a type of marine zooplankton invertebrate which plays an important role in the global dynamics of the marine food webs and the biosphere carbon cycle. The results, published in the new scientific journal from the group Nature Communications Biology, show that biotoxins that are produced by these algae at the end of the blooms can affect the embryonic development, and therefore the reproduction of this species, with severe ecological consequences.

The study, led by UB lecturers Ricard Albalat and Cristian Cañestero from the Department of Genetics, Microbiology and Statistics and members of the Biodiversity Research Institute (IRBio) of the UB, is especially relevant considering that ocean acidification and warming caused by climate change could intensify the frequency of blooms in harmful algae like diatoms. The following UB researchers also took part in the research study: Núria P. Torres-Águila -first signer of the study-, Josep Martí Solans, Alfonso Ferrández, Alba Almazán and Vittoria Roncalli.


This is Oikopleura dioica feeding from red microalgae, organism used by the groups of Albalat and Cañestero in EcoEvoDevo studies.

Credit: Torres-Águila, Et. al.

Biotoxins affecting the embryonic development

Diatoms are a type of microalgae that contribute to the marine phytoplankton photoautotrophic production, since these provide nutrients to all other forms of life out of solar light. However, diatoms can produce biotoxins (polyunsaturated aldehydes) as a defence mechanism against its predators, such as small crustacean like copepods.

These substances are massively released at the end of the blooms and can alter the biology of marine animals in the area. The new study has analysed the impact of these biotoxins in the development of O. dioca, a type of marine invertebrate belonging to the appendicularian chordates (Appendicularia or Larvacea).

Appendicularians are key organisms in the ocean food web, since they process about 10 % of the primary production in the ocean and serve as food for fish larvae in the marine trophic chain. "Results show that biotoxins that are produced by diatoms can cause important alterations in the development of O. dioica inducing a phenotype they call 'golf ball' which affects the embryo morphogenesis and differentiation of their trunk and tail", says Cristian Cañestero.

Moreover, the study reveals these effects take place even in concentrations of the same magnitude order than the ones measured in the sea after diatom blooms. "Although in our study embryonic malformations appear in high concentrations than the ones found in natural conditions, we have also observed lethal embryonic anomalies at similar concentrations to the measured values in nature after blooms", says the researcher.

This discovery is especially relevant considering the increase of acidification and warming in the oceans due climate change could intensify the seriousness and frequency of algae blooms. "Discovering how blooms in harmful algae and the massive production of toxins can alter the physiology of larvae is important due its impact in the marine food web and to predict future problems in fishing caused by global climate change", notes the researcher.

A potential biomarker of zooplankton

The study also analysed the genic response of O. dioica to the impact of biotoxins. "We found that O. dioica can respond to the stress caused by diatoms by delaying the zygotic transcription of the development genes during the first stages and activating defensive genes (set of genes that protect the cell against environmental attacks), even in innocuous concentrations of biotoxins in which we did not observe any embryonic alteration", says Cristian Cañestero.

According to the conclusions of the study, this response could be part of a mechanism developed over the evolution that protects embryos from environmental dangers and which would serve as a potential biomarker.

"Defensive genes would be a molecular biosensor that marine ecologists could use to control the genetic stress in natural populations of appendicularians, and other organisms, exposed to algae blooms in their habitat, and afterwards, assess the potential impact of blooms associated with climate change", highlights the researcher.

These results open a new study area for the UB research team. "The article brings the basics of a new research line in the EcoEvoDevo field, the intersection between Ecology, Developmental Biology and Evolution, which will do research on whether the embryos of marine organisms are ready to respond to climate change", concludes Cristian Cañestero.

Media Contact

Bibiana Bonmati
bbonmati@ub.edu
34-934-035-544

http://www.ub.edu 

Bibiana Bonmati | EurekAlert!
Further information:
https://www.ub.edu/web/ub/ca/menu_eines/noticies/2018/10/049.html
http://dx.doi.org/10.1038/s42003-018-0127-2

More articles from Life Sciences:

nachricht Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection
31.03.2020 | Forschungsverbund Berlin

nachricht A 'cardiac patch with bioink' developed to repair heart
31.03.2020 | Pohang University of Science & Technology (POSTECH)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>