Map of substrate-kinase interactions may lead to more effective cancer drugs

Kinase enzymes deliver phosphates to cell proteins in a process called phosphorylation, switching a cellular function on or off. Irregularities in phosphorylation can lead to uncontrolled cell growth and are a hallmark of cancer.

Many successful cancer drugs are kinase inhibitors, which block the ability of a kinase to bind with a particular protein on the cell, stopping phosphorylation and the creation of cancer cells.

W. Andy Tao, a Purdue associate professor of biochemistry and member of the Purdue University Center for Cancer Research, said that in later stages of cancers, kinase-inhibiting drugs are ineffective because the kinases adapt, finding new protein targets and forming new cancer cells. He believes that creating maps of all the potential routes for cancer cell formation is a key to developing better cancer drugs.

“I would say that 99 percent of these drugs are effective for a few months in late-state cancers, and then the cancers develop resistance,” said Tao, whose findings were published online early in the Proceedings of the National Academy of Sciences. “In the beginning, the cell cannot adjust and it dies. In later stages, the cells find a way. Cancer cells find a way to survive. You block one pathway, and they find another.”

The kinase-protein maps Tao is creating identify kinases and the direct protein targets they phosphorylate. His method weeds out other proteins that are not direct targets, but are later phosphorylated as part of a cascade of reactions that begins when direct target proteins are phosphorylated.

Tao compared cells with and without kinases. The phosphoproteins present only when a kinase was present were considered possible targets. Further, the proteins were dephosphorylated, meaning the phosphate groups that had been added by kinases were removed.

The kinase was then re-introduced, and those proteins that accepted phosphate groups from the kinase were deemed direct targets of that kinase. With that information, drugmakers could tailor kinase-inhibiting drugs to ensure that the drug would stop kinases from reaching all potential targets, making the drugs more effective.

“If you understand the network, you can block all the pathways to cure the cancer,” Tao said.
Tao's research findings focused on the SYK kinase, which is involved in leukemia and breast cancers. He plans to study other kinases, as well as mutated kinases, to understand whether they have different protein targets.

Tao collaborated with Robert Geahlen, a professor in medicinal chemistry and molecular pharmacology at Purdue. The National Institutes of Health funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Andy Tao, 765-494-9605, taow@purdue.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Media Contact

Brian Wallheimer EurekAlert!

More Information:

http://www.purdue.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors