Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manufacturing Live Tissue with a 3D Printer

04.11.2016

At the international iGEM academic competition in the field of synthetic biology, the joint team of students from the Technical University of Munich (TUM) and the Ludwig Maximilian University of Munich (LMU) won the first rank (Grand Prize) in the “Overgraduate” category. The team from Munich developed an innovative process which allows intact tissue to be built with the use of a 3D printer.

The international Genetically Engineered Machine (iGEM) competition encourages students from the field of synthetic biology to implement innovative ideas and to contend with their biotechnology projects. The competition, which was initiated by the Massachusetts Institute of Technology (MIT), has been organized by the iGEM Foundation since 2003 while the MIT campus in Cambridge, MA, hosted the event until 2014. Among the 300 finalist teams this year there were twelve from Germany, including a joint team from TUM and LMU of Munich.


Among the 300 finalist teams this year there were twelve from Germany, including this joint team from TUM and LMU of Munich.

(Photo: TUM/ A. Heddergott)

The 2016 iGEM project of the year, led by Professor Arne Skerra from the Chair of Biological Chemistry at TUM and sponsored by the Research Training Group GRK2062 of LMU, examined the growing problem of insufficient donor organs in transplant medicine.

“The participating students from TUM and LMU developed an innovative method that should ultimately make it possible to manufacture intact tissue, and possibly even complete organs, with the help of a 3D printer,” said Professor Skerra explaining his current project group. “This breakthrough was only made possible by a combination of synthetic biology, molecular biotechnology, protein design, and technical engineering.”

3D Plastic Printer Becomes ‘3D Bioprinter’

One question the team asked was: What if the printed tissue could fulfill entirely new functions in the body, such as the production of therapeutic proteins? The printing of non-living biological material such as cartilage is already state-of-the-art. However, substantial obstacles still had to be overcome on the path to printing complex cell structures. “And this is exactly where this year's project began, in which live cells were printed into a biocompatible matrix using a 3D printer,” project head Skerra explained. For this purpose, a conventional plastic 3D printer was converted into a 3D bioprinter.

Layer by layer, biological tissue is created in this manner. In the past, hydrogels were used for such purposes — they provide a gelatinous scaffold in the first place and are populated with cells thereafter. However, the students from both Munich universities followed an alternative strategy because the ‘scaffold’ approach makes printing more complicated and the cells are held together in an unnatural manner. Instead, they developed a special bio-ink, a type of biochemical two-component resin for directly printing living cells in 3D.

The main component of this system is biotin, commonly known as vitamin H or B7, with which the surface of the cells was coated. The second component is Streptavidin, a protein that binds biotin and serves as the actual biochemical glue. In addition, bulky proteins were equipped with biotin groups to serve as cross-linker. “When a suspension of the cells is ‘printed’ into a concentrated solution of the protein components,” Professor Skerra explained, “the desired 3D structure forms.”

Hence, with this bio-ink a moldable tissue made of live cells is created in the biotINK tissue printer — more or less ready for transplantation. In light of these results, the team led by Professor Skerra and his doctoral students Andreas Reichert and Volker Morath at TUM, whose motto for the competition was “Let’s take bioprinting to the next level,” delivered what they had promised.

Already in 2013, a team led by Professor Skerra participated in the finals and won the second prize in the category "Undergraduates".

Contact:

Prof. Dr. Arne Skerra
Technical University of Munich
Chair for Biological Chemistry
Tel: +49 8161 71 4350
skerra@tum.de
http://biologische-chemie.userweb.mwn.de/index.html

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33513/ PM online
http://2016.igem.org/Team:LMU-TUM_Munich Projektwebsite
https://mediatum.ub.tum.de/1335906?id=1335906 Fotos

Dr. Ulrich Marsch | Technische Universität München

Further reports about: 3D 3D printer Biological Chemistry LMU MIT Manufacturing TUM Tissue proteins synthetic biology

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>