Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating complex molecules by hand

07.11.2014

New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules

Jülich scientists have developed a new control technique for scanning probe microscopes that enables the user to manipulate large single molecules interactively using their hands. Until now, only simple and inflexibly programmed movements were possible.


A word with just 47 molecules

Copyright: Forschungszentrum Jülich


Entwined ways out: The molecules can be extracted by ‘peeling’ them from the layer, as shown by this image of the successful trajectories required to write 'JÜLICH'.

Copyright: Forschungszentrum Jülich

To test their method, the researchers "stencilled" a word into a molecular monolayer by removing 47 molecules. The process opens up new possibilities for the construction of molecular transistors and other nanocomponents. The findings have been published in the Beilstein Journal of Nanotechnology.

"The technique makes it possible for the first time to remove large organic molecules from associated structures and place them elsewhere in a controlled manner," explains Dr. Ruslan Temirov from Jülich's Peter Grünberg Institute.

This brings the scientists one step closer to finding a technology that will enable single molecules to be freely assembled to form complex structures. Research groups around the world are working on a modular system like this for nanotechnology, which is considered imperative for the development of novel, next-generation electronic components.

Using motion tracking, Temirov's young investigators group coupled the movements of an operator's hand directly to the scanning probe microscope. The tip of this microscope can be used to lift molecules and re-deposit them, much like a crane.

With a magnification of five hundred million to one, the relatively crude human movements are transferred to atomic dimensions. "A hand motion of five centimetres causes the sharp tip of the scanning probe microscope to move just one angstrom over the specimen. This corresponds to the typical magnitude of atomic radii and bond lengths in molecules," explains Ruslan Temirov.

Controlling the system in this way, however, requires some practice. "The first few attempts to remove a molecule took 40 minutes. Towards the end we needed only around 10 minutes," says Matthew Green. It took the PhD student four days in total to remove 47 molecules and thus stencil the word "JÜLICH" into a perylenetetracarboxylic acid dianhydride (PTCDA) monolayer.

PTCDA is an organic semiconductor that plays an important role in the development of organic electronics – a field that makes it possible to print flexible components or cheap disposable chips, for example, which is inconceivable with conventional silicon technology.

Small spelling mistakes can even be corrected without difficulty using the new method. A molecule removed by mistake when creating the horizontal line in "H" was easily replaced by Green using a new molecule that he removed from the edge of the layer. "And exactly this is the advantage of this method. The experimenter can intervene in the process and find a solution if a molecule is accidentally removed or if it unexpectedly jumps back to its original position," says the physicist.

The interactive approach makes it possible to manipulate molecules that are part of large associated structures in a controlled manner. In contrast to single atoms and molecules, the manipulation of which using scanning probe microscopes has long been routine, larger molecular assemblies were almost impossible to manipulate in a targeted manner until now.

The reason for this is that the bonding forces of the molecules, which are bound to all of the surrounding neighbouring molecules, are almost impossible to predict exactly. Only during the experiment it becomes clear what force is required to lift a molecule and via what path it can be successfully removed.

The experience gained will help to speed up time-consuming operations. "In future, self-learning computers will take over complex molecule manipulation. We are now gaining the intuition for nanomechanics that is so essential for this project using our novel control system and quite literally by hand," says Dr. Christian Wagner, who is also part of the Jülich group.


Original publication:

Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope
Matthew F. B. Green, Taner Esat, Christian Wagner, Philipp Leinen, Alexander Grötsch, F. Stefan Tautz, Ruslan Temirov
Beilstein J. Nanotechnol. 2014, 5, 1926–1932, published 31 October 2014
DOI: 10.3762/bjnano.5.203

Animation: Manipulating a PTCDA molecule with the scanning probe microscope


noPlaybackVideo

DownloadVideo

The large PTCDA molecule has four reactive oxygen atoms at its corners. These bind the molecule to the tip of the scanning tunnelling microscope once it approaches closely enough.
Source: N. Fournier, C. Wagner, C. Weiss, R. Temirov, F.S.Tautz, Physical Review B, 84, 035435, 2011 (“Copyright by the American Physical Society”)

Further information:

Press release from 17 August 2012, "Force Meter for Molecular Bonds" (in German)

Research at the Peter Grünberg Institute – Functional Nanostructures at Surfaces (PGI-3)

Young investigators group "Complex Transport Regimes in Low-Temperature Scanning Tunnelling Microscopy" headed by Dr. Ruslan Temirov at PGI-3

Contact:

Dr. Ruslan Temirov
Peter Grünberg Institute – Functional Nanostructures at Surfaces (PGI-3)
Tel: +49 2461 61-3462
r.temirov@fz-juelich.de

Press contact:

Tobias Schlößer
Corporate Communications (UK)
Tel: +49 2461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Further information:
http://www.fz-juelich.de

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>