Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating Brain Inflammation May Help Clear Brain of Amyloid Plaques

23.10.2009
In a surprising reversal of long-standing scientific belief, researchers at the Mayo Clinic campus in Florida have discovered that inflammation in the brain is not the trigger that leads to buildup of amyloid deposits and development of Alzheimer's disease.

In fact, inflammation helps clear the brain of these noxious amyloid plaques early in the disease development, as seen from studies in mice that are predisposed to the disorder, say the researchers in the online issue of the FASEB Journal.

"This is the opposite of what most people who study Alzheimer's disease, including our research group, believed," says the study's lead investigator Pritam Das, Ph.D., an assistant professor in the Department of Neuroscience. "And it also suggests that we can take advantage of the brain's own immune cells by directing them to remove amyloid plaques from the brain, thus protecting the brain against their harmful effects."

The study tested the widely held belief that inflammation in the brain increases the production and buildup of a toxic protein known as amyloid beta (Aâ). Clumps of this protein in the brain are the hallmark pathological feature of Alzheimer's disease.

"The belief was that when the brain's immune cells, microglia, are activated following the initial buildup of amyloid plaques, the inflammation that ensues stimulates the brain cell's machinery to produce more Aâ, which then leads to more inflammation," Dr. Das says. "This chronic activation of immune cells results in a self-reinforcing feedback loop that promotes more and more Aâ deposition and inflammation, eventually leading to malfunction and death of brain neurons."

Although this notion, which came mostly from studies in laboratory cells, was accepted throughout the scientific community, the Mayo Clinic researchers developed a way to test it in a living organism — and they expected to see the same result.

"We had initiated these studies using our new in vivo model to confirm whether inducing inflammation in the brain would in fact exacerbate the disease," Dr. Das says.

The researchers used a technique known as "Somatic Brain Transgenesis" to increase expression of Interleukin-6 (IL-6), a cytokine that stimulates an inflammatory immune response in the brains of young mice predisposed to developing age-progressive amyloid plaques. This powerful technology allows researchers to express any gene of interest in specific parts of the body by tagging the gene onto Adeno-associated viruses, which are inert. In this way, they can study the function of any protein in the brain, and also test its potential therapeutic use.

They found that IL-6 triggered inflammation throughout the brain, and they expected to see a big buildup of plaque as well as damage to brain neurons. "Instead, to our surprise, we found that the inflammation prevented plaques from forming and cleared whatever plaque that was already there," Dr. Das says.

Given this unexpected result, they performed additional experiments using different strategies. "First, we expressed IL-6 in the brains of newly born mice that are yet to develop any amyloid plaques and, secondly, we expressed IL-6 in the brains of mice with pre-existing plaque pathology," he says. "In both these cases, we got similar results — the presence of IL-6 leads to the clearance of amyloid plaques from the brain."

The researchers then performed experiments to determine how the amyloid plaques were removed from the brain. Their analysis revealed that the inflammation induced by IL-6 in the brain directed the microglia cells to remove the amyloid plaques from the brain. Microglial cells do this by phagocytosis. "They gobble up the plaque, which they 'see' as a foreign invader, and break it apart," Dr. Das says. Researchers also found that activated microglia cells were closely attached to the plaques and expressed proteins that help in removing the amyloid plaques from the brain. Dr. Das hypothesizes that inflammation helps clear plaque early in the development of Alzheimer's disease, but that at some point, continued production of the amyloid clumps in the brain overwhelms the ability of microglial cells to do their job. At that point, inflammation, chronically activated by presence of the amyloid plaque, can produce its own unhealthy effects on brain function.

"Indeed, it may be feasible to transiently and selectively manipulate the microglia cells to alter amyloid plaques in a manner that is both effective and tolerable," he says. "However, given that chronic inflammation over years of insult may be detrimental, any intervention based on activation of the brain's immune system must clearly strike a balance between the neuroprotective and neurotoxic effects," cautions Dr. Das. "We need to study this phenomenon more thoroughly, but if we are right, it could have implications not only for Alzheimer's disease but also other neurodegenerative disorders characterized by protein buildup in the brain, such as Parkinson's disease."

The study was funded by grants from the American Health Assistance Foundation (AHAF), Mayo Clinic and the National Institutes of Health (NIH).

About Mayo Clinic
Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education visit www.mayo.edu. MayoClinic.com is available as a resource for your health stories.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>