Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria parasite manipulates host's scent

01.07.2014

Malaria parasites alter the chemical odor signal of their hosts to attract mosquitos and better spread their offspring, according to researchers, who believe this scent change could be used as a diagnostic tool.

"Malaria-infected mice are more attractive to mosquitos than uninfected mice," said Mark Mescher, associate professor of entomology, Penn State. "They are the most attractive to these mosquito vectors when the disease is most transmissible."

Malaria in humans and animals is caused by parasites and can be spread only by an insect vector, a mosquito. The mosquito ingests the parasite with a blood meal, and the parasite creates the next generation in the mosquito's gut. These nascent parasites travel to the mosquito's salivary glands and are passed to the host during the next meal.

"We were most interested in individuals that are infected with the malaria parasite but are asymptomatic," said Consuelo De Moraes, professor of entomology, Penn State. "Asymptomatic people can still transmit the disease unless they are treated, so if we can identify them we may be able to better control the disease."

The researchers found that using a mouse malaria model, the mosquitos were more attracted to infected mice, even when the mice were otherwise asymptomatic. They report their findings today (June 30) in the Proceedings of the National Academy of Sciences.

The researchers, who also included Nina M. Stanczyk, former postdoctoral fellow; Heike S. Betz, research technologist, entomology; Hannier Pulido, graduate student in entomology; Derek G. Sim, technician, senior research assistant, biology; and Andrew F. Read, Alumni Professor in the Biological Sciences and Professor of Entomology, all of Penn State, also showed that several individual compounds whose concentrations were altered by malaria infection contributed to the increase in attractiveness to mosquitoes.

To eliminate other factors such as carbon dioxide production and body temperature as an attractant, the researchers extracted the body scent from the mice and showed that the changes in the scent alone altered the attraction of mosquitoes.

"Mosquitos wouldn't opt to carry the malaria parasite because it isn't good for the mosquito," said De Moraes. "Probably the parasite is not only manipulating the mice to alter their scent, but the mosquitos to be more attracted to the infected scent."

While the mosquitos were not attracted to mice that had acute malaria symptoms, they were particularly attracted to mice during a period of recovery when the transmissible stage of the malaria parasite was present at high levels.

In regions where malaria is prevalent, significant numbers of people harbor asymptomatic infections but remain able to transmit the disease to others. The researchers hope this altered scent profile might help to identify those needing treatment.

"If this holds true in humans, we may be able to screen humans for the chemical scent profile using this biomarker to identify carriers," said Mescher.

###

The Bill and Melinda Gates Foundation Grand Challenges Exploration supported this work.

A'ndrea Elyse Messer | Eurek Alert!
Further information:
http://www.psu.edu

Further reports about: concentrations dioxide malaria mosquito parasite temperature

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>