Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria: Hot News on the Parasite

05.06.2009
A sticky layer of proteins covers the malaria parasite during a certain phase of its life-cycle, as was recently shown by scientists from the Research Center for Infectious Diseases of the University of Würzburg. This discovery might be an important step towards the development of vaccines.

The malaria pathogen Plasmodium falciparum is a parasite consisting of a single cell. It is transmitted to humans by the bite of an Anopheles mosquito. In the human body the pathogen invades the red blood cells, digests them - and thus causes a life-threatening disease.

The parasite's sexual reproduction takes place in the gut of the mosquito: When mosquitoes bite an infected person, they not only take up the blood, but also the parasite. In the gut, the plasmodia transform into generative cells of different sizes, which can, in principle, be compared to human egg and sperm cells. They fuse, leave the midgut and migrate into the mosquito's salivary glands. During the next blood meal, the mosquito infects another human, and thus completes the parasite?s life cycle.

A protein layer covers the generative cells of the malaria parasite

A Würzburg research team around Gabriele Pradel and Nina Simon made an astonishing discovery: During maturation of of its generative cells, the pathogen expresses six special proteins, which assemble to form larger complexes. These protein complexes can later be found on the surface of the "egg" and form a sticky cover. These findings have now been published in the Journal of Biological Chemistry.

Why is this such hot news? "The sticky cover might function to capture the 'sperm' cells. But it is also possible that the egg protects itself against the aggressive environment of the mosquito midgut", Gabriele Pradel speculates.

A protective mechanism would in fact be plausible. In the mosquito gut the malaria parasites initially live protected inside the human red blood cells. However, these rupture as soon as the generative cells are mature - from this moment on a new protective shield would be useful for the survival of the pathogen.

A new target for a vaccine?

This sticky shield might be a weak point of the malaria parasite. If essential for malaria reproduction, the proteins would be an attractive target for so-called transmission blocking vaccines. But first of all, Gabriele Pradel and her team have to identify the real purpose of the layer. And this can take several years.

New measures against malaria are needed urgently: All around the world, an estimated one to three million people die of this infection every year. The pathogens are getting more and more resistant against existing drugs; a possible vaccine is being clinically tested. Other prospective vaccines have all proved to be without effect.

Break through by breeding mosquitoes

The Würzburg research group studies the development of the malaria parasites in the Anopheles mosquito in a high security lab. Here, they rear the mosquitoes, from the eggs, to the larvae and the pupae, and finally to the adult insects. For their experiments, the scientists take the freshly hatched mosquitoes and have them suck human blood to which they added plasmodia.

The breeding of Anopheles mosquitoes in the so-called insectory is Gabriele Pradel's pride and joy: "Within Germany, similar research opportunities only exist in Hamburg and Heidelberg." Even globally, they are rare: Only a total of about ten laboratories have one.

About Gabriele Pradel

The microbiologist Gabriele Pradel is heading a young investigator group at the Würzburg Research Center for Infectious Diseases since 2005. The German Research Foundation (DFG) sponsors her work in the framework of the Emmy Noether Program.

"Sexual Stage Adhesion Proteins Form Multi-protein Complexes in the Malaria Parasite Plasmodium falciparum", Nina Simon, Sabrina M. Scholz, Cristina K. Moreira, Thomas J. Templeton, Andrea Kuehn, Marie-Adrienne Dude, and Gabriele Pradel. The Journal of Biological Chemistry, Vol. 284, Issue 21, 14537-14546, MAY 22, 2009. DOI 10.1074/jbc.M808472200

Contact: PD Dr. Gabriele Pradel; phone ++ 49 (931) 31-2174, gabriele.pradel@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>