Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The making and unmaking of stem-like, aggressive breast cancer cells

10.08.2012
Breast cancers that depend on the hormones estrogen and progesterone are susceptible to treatments targeting these hormones. Take away this dependence and you lose a valuable treatment option.
A University of Colorado Cancer Center study published as a featured article in the journal Oncogene shows how progesterone does just this – by suppressing a key microRNA, progestins return breast cancer cells to a stem-cell-like state in which they haven’t yet differentiated, and are thus more resistant to chemotherapies and more likely to carry a poor prognosis.

“The reason we were looking into the possible role of microRNAs in the dedifferentiation of breast cancer cells into this aggressive, chemo-resistant phenotype is that microRNAs tend to be good, druggable targets. Because one microRNA may regulate many genes involved in a cancerous signaling pathway, we hoped to find one target with many beneficial effects,” says Diana Cittelly, PhD, postdoctoral fellow at the CU Cancer Center and the paper’s first author. The study was a collaboration between the CU Cancer Center labs of Jennifer Richer, PhD, and Carol Sartorius, PhD.

Specifically, the study shows that progestins regulate miRNA-29 – a molecule that helps to decide which of a cell’s genes are and are not turned into proteins. This regulation of miRNA-29 creates a cascade that stimulates breast cancer cells to revert back to a stem-like state, marked by proteins CD44 and CK5. In animal models, these stem-like cells helped breast cancer evolve around the blockages of current treatments..

“We can manipulate this miRNA-29 in cell lines,” Cittelly says, “and we hope technology isn’t too far in the future that will allow us to deliver miRNA-29 in human cancers as well.”
Turn off the role of miRNA-29 and the hope is that breast cancers won’t be able to gain stem cell-like traits and lose their hormone dependence.

This work was supported by DOD BCRP Postdoctoral Fellowship W81XWH-11-1-0101 and DOD Idea Award BCRP W81XWH-11-1-0210.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>