Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making sure antibiotics work as they should

09.10.2014

Researchers at ETH Zurich are decoding the structure of the large ribosomal subunit of the mitochondria at an atomic level, thereby providing insight into the molecular architecture of this ribosome with implications for a better understanding of the mode of action of antibiotics.


Detail of the structure of the large subunit of the mitochondrial ribosome in mammals. (Source: Chair N. Ban / ETH Zurich)

A team of ETH Zurich researchers led by professors Nenad Ban and Ruedi Aebersold have studied the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms.

However, higher organisms (eukaryotes), which include fungi, plants, animals and humans, contain much more complex ribosomes than bacteria. In eukaryotes, ribosomes can also be divided into two types: those in the cytosol – which comprises the majority of the cell – and those found in the mitochondria or “power plants” of cells. Mitochondria are only found in eukaryotes.

Ribosomes serve as translation devices for the genetic code and produce proteins based on the information stored in DNA. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids (transfer RNA or tRNA) to decode the genetic code it receives in the form of messenger RNA, while the larger subunit joins the amino acids delivered by the transfer RNA together like a string of pearls.

Even higher resolution, even more details

Mitochondrial ribosomes are especially difficult to study because they are found only in small amounts and are difficult to isolate. At the beginning of the year, ETH researchers had shed light on the molecular structure of the large subunit of the mitoribosome in mammalian cells to a resolution of 4.9 Å (less than 0.5 nm).

However, this resolution was not adequate to reliably build a complete atomic model of this previously unknown structure. The team lead by ETH Professor Nenad Ban has now succeeded in this task and was able to map the entire structure at a resolution of 3.4 Å (0.34 nm). The researchers recently published their findings in the scientific journal Nature.

The scientists used high-resolution cryo-electron microscopy at the Electron Microscopy Center of ETH Zurich (ScopeM) and state-of-the-art mass spectrometry methods in their experiments. Thanks to recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it only recently became possible to capture images of biomolecules at a resolution of less than four angstroms.

Improving the effect of antibiotics

In particular, the new images show the details of the peptidyl transferase centre (PTC), which is where the amino acid building blocks are combined. The proteins synthesised in this way then pass through a tunnel, where they finally exit the large subunit of the ribosome.

“This process is medically relevant,” said Basil Greber, lead author of the study and postdoctoral researcher in Nenad Ban's group. The reason is that this tunnel is a target for certain antibiotics. The antibiotic becomes lodged in the tunnel and prevents the proteins that have just been synthesized from leaving the tunnel. However, antibiotics should only inhibit protein synthesis in the ribosomes of bacteria.

“For an antibiotic to be used in humans, it must not attack human ribosomes,” explains Greber. Antibiotics must inhibit protein synthesis only in bacterial ribosomes. The problem is that mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes. “This can lead to serious side effects.” The ETH researchers' findings will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes. This is one basic requirement for using them in clinical applications.

A surprising discovery

The ETH researchers also made an unexpected discovery. They found that mitoribosomes use transfer RNA in two fundamentally different ways. Firstly, the tRNA is used to select the right amino acid for peptide synthesis in the PTC. Secondly, one tRNA is a fixed part of the structure, unlike in all other ribosomes. Although it has been known for quite some time that mitochondrial ribosomes integrated new proteins into their structure over the course of their development, this is the first time that the use of an entirely new RNA molecule was observed. “This demonstrates the great evolutionary plasticity of mitoribosomes,” underscored Greber.

The ETH team is now faced with a major, still unresolved task in its research: determining the structure of the smaller subunit of the mitochondrial ribosome. The fact that it is more flexible than the large subunit renders this undertaking an even greater challenge.

Literature reference

Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N: The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature, o nline publication 1 Oktober 2014. doi: 10.1038/nature13895 

Greber B et al.: Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 2014, 505: 515–519. doi: 10.1038/nature12890 

Nenad Ban | Eurek Alert!
Further information:
https://www.ethz.ch/en/news-and-events/eth-news/news/2014/10/making-sure-antibiotics-work-as-they-should.html

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>