Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making liquid crystals stand tall

21.11.2011
Molecular ‘handles’ that allow on-demand growth of thick columnar films make enhanced liquid crystal devices viable.

Most liquid-crystalline displays contain rod-like molecules that quickly switch from one orientation to another when subjected to electric fields. This movement creates a shutter effect that turns light on and off at high rates.

But the conductivity of rod-like molecules pales in comparison to disc-shaped, or discotic, liquid crystals. Composed primarily of aromatic molecules surrounded by flexible side chains, discotic molecules can stack into extended columns that enable one-dimensional charge transport and semiconducting capabilities. However, these columns have such tight packing that no one has found a way to orient them reliably using electricity.

Now, researchers led by Takuzo Aida from the University of Tokyo, Hideo Takezoe from the Tokyo Institute of Technology and Masaki Takata from the RIKEN SPring-8 Center in Harima have discovered that aromatic amides with branched, paraffin-like side chains can act as molecular ‘handles’ for electric field alignment1. Furthermore, they succeeded in growing discotic films hundreds of times thicker than before, putting devices that incorporate this technology one step closer to production.

Aida and colleagues were investigating discotic liquid crystals consisting of molecules called corannulene derivatives when they made their finding. Corannulene has a core of five fused hydrocarbon rings surrounded by ten aromatic amides, giving it a bowl-like shape. Despite this compound’s large size, the researchers found that electric fields could uniformly align the columns with hexagonal geometries over a range of temperatures (Fig. 1).

The researchers first postulated that the inner dipole of the curved corannulene core accounted for the field-induced orientations. But when they synthesized a similar discotic liquid crystal containing a flat, non-polar triphenylene core, they observed the same striking field alignment—key evidence that the amide side chains acted as responsive handles that interact with the applied electric field and guide the discotic molecules into place.

Armed with this knowledge, the researchers synthesized several discotic columnar liquid crystals with slightly tweaked handles to optimize this behavior. Nearly all of these entities showed columnar alignment that persisted even after extinguishing the electric field. The team could also break apart the columns and restore the molecules’ random orientations using a simple heating procedure.

Because the column heights depended on applied field strength, the researchers produced millimeter-thick films in any desired orientation by sandwiching their compounds between two large-area electrodes. “Unless conducting discotic columns can be aligned to macroscopic length scales, they will remain impractical,” says Aida. “Therefore, our achievement is quite important for organic electronic device applications.”

Reference:
Miyajima, D., Araoka, F., Takezoe, H., Kim, J., Kato, K., Takata, M. & Aida, T. Electric-field-responsive handle for large-area orientation of discotic liquid-crystalline molecules in millimeter-thick films. Angewandte Chemie International Edition 50, 7865–7869 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New candidate for raw material synthesis through gene transfer
02.07.2020 | Karlsruher Institut für Technologie (KIT)

nachricht Marine alga from the Kiel Fjord discovered as a remedy against infections and skin cancer
02.07.2020 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

Spintronics: Faster data processing through ultrashort electric pulses

02.07.2020 | Information Technology

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>