Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making liquid crystals stand tall

21.11.2011
Molecular ‘handles’ that allow on-demand growth of thick columnar films make enhanced liquid crystal devices viable.

Most liquid-crystalline displays contain rod-like molecules that quickly switch from one orientation to another when subjected to electric fields. This movement creates a shutter effect that turns light on and off at high rates.

But the conductivity of rod-like molecules pales in comparison to disc-shaped, or discotic, liquid crystals. Composed primarily of aromatic molecules surrounded by flexible side chains, discotic molecules can stack into extended columns that enable one-dimensional charge transport and semiconducting capabilities. However, these columns have such tight packing that no one has found a way to orient them reliably using electricity.

Now, researchers led by Takuzo Aida from the University of Tokyo, Hideo Takezoe from the Tokyo Institute of Technology and Masaki Takata from the RIKEN SPring-8 Center in Harima have discovered that aromatic amides with branched, paraffin-like side chains can act as molecular ‘handles’ for electric field alignment1. Furthermore, they succeeded in growing discotic films hundreds of times thicker than before, putting devices that incorporate this technology one step closer to production.

Aida and colleagues were investigating discotic liquid crystals consisting of molecules called corannulene derivatives when they made their finding. Corannulene has a core of five fused hydrocarbon rings surrounded by ten aromatic amides, giving it a bowl-like shape. Despite this compound’s large size, the researchers found that electric fields could uniformly align the columns with hexagonal geometries over a range of temperatures (Fig. 1).

The researchers first postulated that the inner dipole of the curved corannulene core accounted for the field-induced orientations. But when they synthesized a similar discotic liquid crystal containing a flat, non-polar triphenylene core, they observed the same striking field alignment—key evidence that the amide side chains acted as responsive handles that interact with the applied electric field and guide the discotic molecules into place.

Armed with this knowledge, the researchers synthesized several discotic columnar liquid crystals with slightly tweaked handles to optimize this behavior. Nearly all of these entities showed columnar alignment that persisted even after extinguishing the electric field. The team could also break apart the columns and restore the molecules’ random orientations using a simple heating procedure.

Because the column heights depended on applied field strength, the researchers produced millimeter-thick films in any desired orientation by sandwiching their compounds between two large-area electrodes. “Unless conducting discotic columns can be aligned to macroscopic length scales, they will remain impractical,” says Aida. “Therefore, our achievement is quite important for organic electronic device applications.”

Reference:
Miyajima, D., Araoka, F., Takezoe, H., Kim, J., Kato, K., Takata, M. & Aida, T. Electric-field-responsive handle for large-area orientation of discotic liquid-crystalline molecules in millimeter-thick films. Angewandte Chemie International Edition 50, 7865–7869 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>