Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Colors from Black and White

28.05.2013
It is very annoying when colors fade over time, sometimes simply from exposure to light.

In the journal Angewandte Chemie, Japanese scientists have now introduced a new type of colorfast, environmentally friendly pigment. These consist of submicrometer-sized silicon dioxide particles and carbon black and are simply sprayed on to the desire surface. The resulting color is tough and does not fade.



Organic dyes fade when exposed to UV light. Inorganic pigments do not fade but are often based on toxic heavy metals such as chromium. In contrast, Yukikazu Takeoka, Shinya Yoshioka and their co-workers at the Universities of Nagoya and Osaka have selected silicon dioxide (SiO2), the main component of sand, as the basis for their novel pigments. Submicrometer-sized SiO2 particles look white to the human eye, so where does the color come from?

Conventional pigments absorb some portion of visible light; the reflected portions then combine to produce a certain color. A different type of color generation, known as structural color, is broadly found in nature, for example among butterflies: Arrays of very small particles can also appear colored without absorption by causing wavelength-dependent optical interference, refraction, and light scattering. The color depends of the particle size.

Structural colors are normally iridescent—their color appearance changes depending on the angles of irradiation and observation. This results from the high degree of order of the particles in their crystal lattice. To prevent this, the researchers aimed to avoid crystallization, maintaining their particles in a noncrystalline, amorphous arrangement—a very difficult challenge. The scientists solved this problem by dispersing silicon dioxide nanoparticles in methanol and spraying them onto the surface to be colored.

The methanol evaporates during the spraying process, so the SiO2 lands on the surface as a dry powder, forming a thin, even membrane of amorphous particles; it is given no chance to crystallize. Furthermore, a polyelectrolyte can be used to stabilize the structure of the colloidal amorphous array. Depending on the particle size, the researchers obtained membranes that ranged in color from whitish blue (230 nm) to whitish pink (360 nm).

These amorphous structures only produced very pale colors. However, the team found a solution to this problem: when particles of carbon black were added, the color saturation was significantly increased. The reason for this is that the carbon black particles reduce light scattering over the entire visible spectrum. This new technology thus allows for intensely colored images with many saturated colors as well as Japanese-style paintings in pale colors.

Besides for art objects, the pigments could be used for architectural paints and automotive coatings as well as in cosmetic products.

About the Author
Dr. Yukikazu Takeoka is an Associate Professor at Nagoya University. His research focus on smart materials such as structural colored materials, high mechanical strength gels, densely grafted polymer brushes, and photonic band gap materials for optical and biological applications.

Author: Yukikazu Takeoka, Nagoya University (Japan), mailto:ytakeoka@apchem.nagoya-u.ac.jp

Title: Production of Colored Pigments with Amorphous Arrays of Black and White Colloidal Particles

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301321

Yukikazu Takeoka | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Unique centromere type discovered in the European dodder
28.01.2020 | Leibniz Institute of Plant Genetics and Crop Plant Research

nachricht Atomic layer 3D printing
28.01.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

Unique centromere type discovered in the European dodder

28.01.2020 | Life Sciences

It’s closeness that counts: how proximity affects the resistance of graphene

28.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>