Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The making of a queen: Road to royalty begins early in paper wasps

20.05.2010
Social status in paper wasps is established earlier in life than scientists thought, says a study published this month in the journal PLoS ONE.

While many social insects have distinct social classes that differ in appearance and are fixed from birth, paper wasp society is more fluid — all castes look alike, and any female can climb the social ladder and become a queen. Now, molecular analysis reveals that paper wasp social hierarchy is less flexible than it appears. Queens diverge from their lower-status sisters long before they reach adulthood, scientists say.

Slender reddish-brown wasps with black wings, Polistes metricus paper wasps are a common sight throughout the Midwestern and Southeastern U.S. Hidden in papery umbrella-shaped nests in the eaves and rafters of your house, a complex society is hard at work.

Female wasps develop into one of two castes that take on different roles within the nest. While young queens don't work and eventually leave the nest to reproduce and rule colonies of their own, workers forego reproduction and spend their lives defending the nest and raising their siblings.

"All offspring look alike but some work and some don't," said lead author James Hunt, currently a visiting scholar at the National Evolutionary Synthesis Center in Durham, NC. "The workers are the ones that fly out and sting you if they feel their colony is threatened."

Hunt and his colleagues wanted to find out if hidden molecular mechanisms set some paper wasps on the path to becoming workers, and others to becoming queens. "Many scientists think that paper wasp social status isn't decided until they are adults, but some think there is more to it than that," said Hunt, also a biologist at North Carolina State University.

With co-authors Amy Toth and Tom Newman at the University of Illinois and Gro Amdam and Florian Wolschin at Arizona State University, the researchers measured gene activity and protein levels in young paper wasp larvae before they took on different roles.

Although all wasp larvae look and act alike, the researchers discovered several differences during development that predispose them to one caste or the other.

The larvae that become queens have high levels of a group of proteins that enable them to survive the winter and reproduce next year, whereas the ones that become workers are much shorter-lived and have low levels of these proteins, said Hunt. "There's less upward mobility in the ones that become the workers. They may look just like the future queens, but they are strongly biased toward the worker role."

Future queens also showed higher activity of several genes involved in caste determination in other, more recently evolved insects that have more visible distinctions between castes. "Paper wasps and honey bees are separated by 100 million years of evolution, but we see some of the same gene and protein patterns in paper wasps that lead to different types of adults in bees," he explained.

The results help shed light on how insect social behavior comes to be, Hunt explained. "It is sometimes argued that adult wasps actually choose to become workers in order to help their mother reproduce and raise their sisters — hence the term 'altruistic,'" he said. "What we found is that really the choice is limited by how they develop as larvae."

The team's findings were published online in the May 17 issue of PLoS ONE.

Michael Henshaw of Grand Valley State University was also an author on this study.

CITATION: Hunt, J., F. Wolschin, et al. (2010). "Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively social wasp." PLoS ONE. http://dx.plos.org/10.1371/journal.pone.0010674.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>