Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making a gem of a tiny crystal

29.11.2013
Slowly cooled DNA transforms disordered nanoparticles into orderly crystal

Nature builds flawless diamonds, sapphires and other gems. Now a Northwestern University research team is the first to build near-perfect single crystals out of nanoparticles and DNA, using the same structure favored by nature.

"Single crystals are the backbone of many things we rely on -- diamonds for beauty as well as industrial applications, sapphires for lasers and silicon for electronics," said nanoscientist Chad A. Mirkin. "The precise placement of atoms within a well-defined lattice defines these high-quality crystals.

"Now we can do the same with nanomaterials and DNA, the blueprint of life," Mirkin said. "Our method could lead to novel technologies and even enable new industries, much as the ability to grow silicon in perfect crystalline arrangements made possible the multibillion-dollar semiconductor industry."

His research group developed the "recipe" for using nanomaterials as atoms, DNA as bonds and a little heat to form tiny crystals. This single-crystal recipe builds on superlattice techniques Mirkin's lab has been developing for nearly two decades.

In this recent work, Mirkin, an experimentalist, teamed up with Monica Olvera de la Cruz, a theoretician, to evaluate the new technique and develop an understanding of it. Given a set of nanoparticles and a specific type of DNA, Olvera de la Cruz showed they can accurately predict the 3-D structure, or crystal shape, into which the disordered components will self-assemble.

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences. Olvera de la Cruz is a Lawyer Taylor Professor and professor of materials science and engineering in the McCormick School of Engineering and Applied Science. The two are senior co-authors of the study.

The results will be published Nov. 27 in the journal Nature.

The general set of instructions gives researchers unprecedented control over the type and shape of crystals they can build. The Northwestern team worked with gold nanoparticles, but the recipe can be applied to a variety of materials, with potential applications in the fields of materials science, photonics, electronics and catalysis.

A single crystal has order: its crystal lattice is continuous and unbroken throughout. The absence of defects in the material can give these crystals unique mechanical, optical and electrical properties, making them very desirable.

In the Northwestern study, strands of complementary DNA act as bonds between disordered gold nanoparticles, transforming them into an orderly crystal. The researchers determined that the ratio of the DNA linker's length to the size of the nanoparticle is critical.

"If you get the right ratio it makes a perfect crystal -- isn't that fun?" said Olvera de la Cruz, who also is a professor of chemistry in the Weinberg College of Arts and Sciences. "That's the fascinating thing, that you have to have the right ratio. We are learning so many rules for calculating things that other people cannot compute in atoms, in atomic crystals."

The ratio affects the energy of the faces of the crystals, which determines the final crystal shape. Ratios that don't follow the recipe lead to large fluctuations in energy and result in a sphere, not a faceted crystal, she explained. With the correct ratio, the energies fluctuate less and result in a crystal every time.

"Imagine having a million balls of two colors, some red, some blue, in a container, and you try shaking them until you get alternating red and blue balls," Mirkin explained. "It will never happen.

"But if you attach DNA that is complementary to nanoparticles -- the red has one kind of DNA, say, the blue its complement -- and now you shake, or in our case, just stir in water, all the particles will find one another and link together," he said. "They beautifully assemble into a three-dimensional crystal that we predicted computationally and realized experimentally."

To achieve a self-assembling single crystal in the lab, the research team reports taking two sets of gold nanoparticles outfitted with complementary DNA linker strands. Working with approximately 1 million nanoparticles in water, they heated the solution to a temperature just above the DNA linkers' melting point and then slowly cooled the solution to room temperature, which took two or three days.

The very slow cooling process encouraged the single-stranded DNA to find its complement, resulting in a high-quality single crystal approximately three microns wide. "The process gives the system enough time and energy for all the particles to arrange themselves and find the spots they should be in," Mirkin said.

The researchers determined that the length of DNA connected to each gold nanoparticle can't be much longer than the size of the nanoparticle. In the study, the gold nanoparticles varied from five to 20 nanometers in diameter; for each, the DNA length that led to crystal formation was about 18 base pairs and six single-base "sticky ends."

"There's no reason we can't grow extraordinarily large single crystals in the future using modifications of our technique," said Mirkin, who also is a professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering and director of Northwestern's International Institute for Nanotechnology.

The title of the paper is "DNA-mediated nanoparticle crystallization into Wulff polyhedra."

In addition to Mirkin and Olvera de la Cruz, authors of the paper are Evelyn Auyeung (first author), Ting I. N. G. Li, Andrew J. Senesi, Abrin L. Schmucker and Bridget C. Pals, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>