Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Way to Make Sensors that Detect Toxic Chemicals

10.07.2009
Researchers have developed a new method for making extremely pure, very small metal-oxide nanoparticles. They are using this simple, fast, and low-temperature process to make materials for gas sensors that detect toxic industrial chemicals (TICs) and biological warfare agents.

Ohio State University researchers have developed a new method for making extremely pure, very small metal-oxide nanoparticles.

They are using this simple, fast, and low-temperature process to make materials for gas sensors that detect toxic industrial chemicals (TICs) and biological warfare agents.

The researchers described their work in a recent issue of the journal Materials Chemistry and Physics.

Patricia Morris, associate professor of materials science and engineering at Ohio State, leads a team of researchers who develop solid materials that can detect toxic chemicals.

The challenge, she said, is to design a material that reacts quickly and reliably to a variety of chemicals, including TICs, when incorporated into a sensor.

"These are sensors that a soldier could wear on the battlefield, or a first responder could wear to an accident at a chemical plant," Morris said.

The material under study is nickel oxide, which has unusual electrical properties. Other labs are studying nickel oxide for use in batteries, fuel cells, solar cells, and even coatings that change color.

But Morris, along with Ohio State doctoral student Elvin Beach, is more interested in how nickel oxide's electrical conductance changes when toxic chemicals in the air settle on its surface. Beach applies a thin coating of the material onto microelectro-mechanical systems (made in a similar fashion to computer chips), with a goal of identifying known toxic substances.

The design works on the same general principle as another, much more familiar sensor.

"The human nose coordinates signals from hundreds of thousands of sensory neurons to identify chemicals," Beach said. "Here, we're using a combination of electrical responses to identify the signature of a toxic chemical."

The key to making the sensor work is how the nickel oxide particles are made. Beach and Morris have devised a new synthesis method that yields very small particles -- which give the sensor a large surface area to capture chemical molecules from the air -- and very pure particles -- which enable the sensor to detect even very small quantities of a substance.

Each particle of nickel oxide measures only about 50 atoms across -- that's equivalent to five nanometers (billionths of a meter).

Beach described the synthesis method in very simple terms.

"Basically, you mix everything together in a pressure vessel, pop it in the oven, rinse it off and it's ready to use," he said.

Of course, for the process to go smoothly, the researchers have to meet specific conditions of temperature and pressure, and leave the material in the pressure cooker for just the right amount of time. For this study, they set the pressure cooker to around 225 °C. They found they can make the particles in as little as 12 hours, but no more than 24 hours.

"Too short a time, and the nickel oxide doesn't form -- too long and it reduces to metallic nickel," Beach explained.

After he removes the nickel oxide from the pressure cooker, he washes it in a common solvent called methyl ethyl ketone to free up the nanoparticles.

At that point, the material is ready to use. Most other synthesis methods require another additional step -- a high-temperature heat treatment.

Starting with a microsensor silicon chip array provided by collaborators at the National Institute of Standards and Technology (NIST), Beach adds a layer of particles using a device called a picoliter drop dispenser. A picoliter is a trillionth of a liter.

He describes the dispenser as a kind of inkjet printer that places a droplet of a liquid suspension containing particles onto a surface -- in this case, the chips.

According to Morris, this is the first time that nickel oxide nanoparticles have been applied in this way.

But to Beach, the most important "first" to come out of the study is their discovery of the reaction pathway -- that is, the various chemical steps that take place inside the pressure cooker during the synthesis of the material.

Now that the researchers know the reaction pathway, they can devise ways to add chemical dopants to the nanoparticles. Dopants would change the function of the sensor -- for instance, to speed up the response rate.

A one-gram batch of nickel oxide nanoparticles costs about $5.00 to make; one chip carries four nanograms (billionths of a gram) of material, so each sensor costs only pennies to fabricate.

Other applications could include exhaust or pollution monitoring and air quality monitoring.

Collaborators on the project include Steve Semancik and Kurt Benkstein at NIST. Study coauthors include: Krenar Shqau, an Ohio State postdoctoral researcher; Samantha Brown, then an undergraduate student visitor from Northwestern University who will return to Ohio State this fall to pursue her doctorate in Chemistry; and Steven Rozeveld at Dow Chemical Co., who helped Beach produce electron microscope images of the nanoparticles.

This work is funded by the National Science Foundation and Ohio State University.

Contact: Patricia Morris, (614) 247-8873; Morris.692@osu.edu

Elvin Beach, Beach.110@osu.edu

Emily Caldwell | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>