Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major advances in understanding the regulation and organization of the human genome

06.09.2012
Journal of Biological Chemistry releases series of articles about ENCODE results

The National Human Genome Research Institute today announced the results of a five-year international study of the regulation and organization of the human genome. The project is named ENCODE, which stands for the Encyclopedia of DNA Elements. In conjunction with the release of those results, the Journal of Biological Chemistry has published a series of reviews that focus on several aspects of the findings.

"The ENCODE project not only generated an enormous body of data about our genome, but it also analyzed many issues to better understand how the genome functions in different types of cells. These insights from integrative analyses are really stories about how molecular machines interact with each other and work on DNA to produce the proteins and RNAs needed for each cell to function within our bodies," explains Ross Hardison of Pennsylvania State University, one of the JBC authors.

Hardison continued: "The Journal of Biological Chemistry recognized that the results from the ENCODE project also would catalyze much new research from biochemists and molecular biologists around the world. Hence, the journal commissioned these articles not only to communicate the insights from the papers now being published but also to stimulate more research in the broader community."

The human genome consists of about 3 billion DNA base pairs, but only a small percentage of DNA actually codes for proteins. The roles and functions of the remaining genetic information were unclear to scientists and even referred to as "junk DNA." But the results of the ENCODE project is filling this knowledge gap. The findings revealed that more than 80 percent of the human genome is associated with biological function.

The study showed in a comprehensive way that proteins switch genes on and off regularly – and can do so at distances far from the genes they regulate – and it determined sites on chromosomes that interact, the locations where chemical modifications to DNA can influence gene expression, and how the functional forms of RNA can regulate the expression of genetic information.

The results establish the ways in which genetic information is controlled and expressed in specific cell types and distinguish particular regulatory regions that may contribute to diseases.

"The deeper knowledge of gene regulation coming from the ENCODE project will have a positive impact on medical science," Hardison emphasizes. For example, recent genetic studies have revealed many genomic locations that can affect a person's susceptibility to common diseases. The ENCODE data show that many of these regions are involved in gene regulation, and the data provide hypotheses for how variations in these regions can affect disease susceptibility, adds Hardison.

The effort behind the ENCODE project was extraordinary. More than 440 scientists in 32 labs in United States, the United Kingdom, Spain, Singapore and Japan performed more than 1,600 sets of experiments on 147 types of tissue. The results were published today in one main integrative paper and five other papers in the journal Nature, 18 papers in Genome Research and six papers in Genome Biology.

The JBC thematic review series was organized by Peggy J. Farnham of the University of Southern California. Farnham is also an author on the main integrative paper in Nature, as were seven other JBC authors, including Hardison, Vishwanath R. Iyer, Bum-Kyu Lee, Raymond K. Auerbach, Ghia Euskirchen, Victor X. Jin and Michael Snyder.

View and download the JBC reviews at https://www.dropbox.com/sh/047x6l5w54t9byi/zP3abN_7Oc?m.

Visit the ENCODE project portal, www.encodeproject.org, for more information.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Press release written by Danielle Gutierrez.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>