Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University installs a new particle accelerator

05.01.2016

New cyclotron produces radioactive isotopes for nuclear chemistry to be applied in basic research and the development of clinical applications

A new particle accelerator will further enhance the research landscape at Johannes Gutenberg University Mainz (JGU). It is to be employed to conduct research into potential applications of medical relevance. The new cyclotron has been installed in a basement structure of the Institute of Nuclear Chemistry on the Gutenberg Campus.


Installation of the cyclotron on the campus of Johannes Gutenberg University Mainz

photo/©: Heinz-Martin Schmidt

It will be used to generate short half-life isotopes, which will be principally used for fundamental research but are also required for the medical imaging technique known as positron emission tomography (PET). The cost of this large-scale research device amounts to about EUR 1 million provided by the German Research Foundation (DFG) and the Rhineland-Palatinate Research Initiative. Commissioning of the new cyclotron is planned for spring 2016.

The cyclotron is a ring-shaped particle accelerator that occupies a floor space of some 7.5 square meters and has a height of two meters. It weighs about 50 tons and a crane had to be used to lower it through a hole in the ceiling into the designated basement room. In addition to the cyclotron room, the new structure has a technical and control center together with an access lock. The structure is linked directly to the Institute of Nuclear Chemistry extension building and has all safety-relevant features.

As it will be able to accelerate protons to an energy of 9.7 mega-electron volts (MeV), the cyclotron at Mainz University can be used to generate the two radioactive elements fluorine-18 and carbon-11. These will be mainly employed for chemical and pharmaceutical research purposes but are also necessary for the PET medical diagnostic imaging technique.

F-18 and C-11 have short half-lives of just 110 and 20 minutes respectively. It is thus necessary to generate them near the location at which they are to be used to ensure that they are available in sufficient quantities. It has not previously been possible in Mainz to create radiopharmaceuticals labeled with C-11 because of its particularly short half-life. The new accelerator has now made this feasible.

"The cyclotron will enhance our currently existing infrastructure and eliminate a bottleneck in the production of radioactive nuclides," explained Professor Frank Rösch of the JGU Institute of Nuclear Chemistry. "It will significantly facilitate the development of new radiopharmaceuticals and their preclinical evaluation while – working in collaboration with the Department of Nuclear Medicine at the Mainz University Medical Center – we will be able to markedly expedite their future application in patient diagnosis."

There are additional benefits to be expected through interdisciplinary joint projects in which the areas of nuclear chemistry, pharmaceutical sciences, organic chemistry, and nuclear medicine at JGU will collaborate with regard to the development and evaluation of new PET radiopharmaceuticals, in some cases also with external institutions such as the Department of Psychiatry, Psychotherapy, and Psychosomatics at RWTH Aachen and the Mainz-based Max Planck Institute for Polymer Research.

Photos:
http://www.uni-mainz.de/bilder_presse/09_kernchemie_zyklotron_einbau_01.jpg
Installation of the cyclotron on the campus of Johannes Gutenberg University Mainz
photo/©: Heinz-Martin Schmidt

http://www.uni-mainz.de/bilder_presse/09_kernchemie_zyklotron_einbau_02.jpg
Installment of a cyclotron door into the newly constructed cyclotron building
photo/©: Heinz-Martin Schmidt

http://www.uni-mainz.de/bilder_presse/09_kernchemie_zyklotron_einbau_03.jpg
(fltr) Professor Tobias Reich (Managing Director of the Institute of Nuclear Chemistry), Professor Norbert Trautmann (Institute of Nuclear Chemistry), Dr. Waltraud Kreutz-Gers (Chancellor of Johannes Gutenberg University Mainz), Professor Georg Krausch (President of Johannes Gutenberg University Mainz), and Professor Frank Rösch (Institute of Nuclear Chemistry) observing the installation of the new cyclotron
photo/©: Heinz-Martin-Schmidt

Further information
Professor Dr. Frank Rösch
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25302
fax +49 6131 39-24692
e-mail: frank.roesch@uni-mainz.de
http://www.kernchemie.uni-mainz.de/radiopharmazie-roesch/117_ENG_HTML.php

Related links:
http://www.kernchemie.uni-mainz.de – Institute of Nuclear Chemistry
http://www.uni-mainz.de/presse/19663_ENG_HTML.php – press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than
EUR 2 million in a cyclotron and its building complex" (19 October 2015)

Weitere Informationen:

http://www.uni-mainz.de/presse/20010_ENG_HTML.php - press release ;
http://www.kernchemie.uni-mainz.de/eng/index.php - Institute of Nuclear Chemistry ;
http://www.uni-mainz.de/presse/19663_ENG_HTML.php - press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than EUR 2 million in a cyclotron and its building complex" (19 Oct. 2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>