Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University installs a new particle accelerator

05.01.2016

New cyclotron produces radioactive isotopes for nuclear chemistry to be applied in basic research and the development of clinical applications

A new particle accelerator will further enhance the research landscape at Johannes Gutenberg University Mainz (JGU). It is to be employed to conduct research into potential applications of medical relevance. The new cyclotron has been installed in a basement structure of the Institute of Nuclear Chemistry on the Gutenberg Campus.


Installation of the cyclotron on the campus of Johannes Gutenberg University Mainz

photo/©: Heinz-Martin Schmidt

It will be used to generate short half-life isotopes, which will be principally used for fundamental research but are also required for the medical imaging technique known as positron emission tomography (PET). The cost of this large-scale research device amounts to about EUR 1 million provided by the German Research Foundation (DFG) and the Rhineland-Palatinate Research Initiative. Commissioning of the new cyclotron is planned for spring 2016.

The cyclotron is a ring-shaped particle accelerator that occupies a floor space of some 7.5 square meters and has a height of two meters. It weighs about 50 tons and a crane had to be used to lower it through a hole in the ceiling into the designated basement room. In addition to the cyclotron room, the new structure has a technical and control center together with an access lock. The structure is linked directly to the Institute of Nuclear Chemistry extension building and has all safety-relevant features.

As it will be able to accelerate protons to an energy of 9.7 mega-electron volts (MeV), the cyclotron at Mainz University can be used to generate the two radioactive elements fluorine-18 and carbon-11. These will be mainly employed for chemical and pharmaceutical research purposes but are also necessary for the PET medical diagnostic imaging technique.

F-18 and C-11 have short half-lives of just 110 and 20 minutes respectively. It is thus necessary to generate them near the location at which they are to be used to ensure that they are available in sufficient quantities. It has not previously been possible in Mainz to create radiopharmaceuticals labeled with C-11 because of its particularly short half-life. The new accelerator has now made this feasible.

"The cyclotron will enhance our currently existing infrastructure and eliminate a bottleneck in the production of radioactive nuclides," explained Professor Frank Rösch of the JGU Institute of Nuclear Chemistry. "It will significantly facilitate the development of new radiopharmaceuticals and their preclinical evaluation while – working in collaboration with the Department of Nuclear Medicine at the Mainz University Medical Center – we will be able to markedly expedite their future application in patient diagnosis."

There are additional benefits to be expected through interdisciplinary joint projects in which the areas of nuclear chemistry, pharmaceutical sciences, organic chemistry, and nuclear medicine at JGU will collaborate with regard to the development and evaluation of new PET radiopharmaceuticals, in some cases also with external institutions such as the Department of Psychiatry, Psychotherapy, and Psychosomatics at RWTH Aachen and the Mainz-based Max Planck Institute for Polymer Research.

Photos:
http://www.uni-mainz.de/bilder_presse/09_kernchemie_zyklotron_einbau_01.jpg
Installation of the cyclotron on the campus of Johannes Gutenberg University Mainz
photo/©: Heinz-Martin Schmidt

http://www.uni-mainz.de/bilder_presse/09_kernchemie_zyklotron_einbau_02.jpg
Installment of a cyclotron door into the newly constructed cyclotron building
photo/©: Heinz-Martin Schmidt

http://www.uni-mainz.de/bilder_presse/09_kernchemie_zyklotron_einbau_03.jpg
(fltr) Professor Tobias Reich (Managing Director of the Institute of Nuclear Chemistry), Professor Norbert Trautmann (Institute of Nuclear Chemistry), Dr. Waltraud Kreutz-Gers (Chancellor of Johannes Gutenberg University Mainz), Professor Georg Krausch (President of Johannes Gutenberg University Mainz), and Professor Frank Rösch (Institute of Nuclear Chemistry) observing the installation of the new cyclotron
photo/©: Heinz-Martin-Schmidt

Further information
Professor Dr. Frank Rösch
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25302
fax +49 6131 39-24692
e-mail: frank.roesch@uni-mainz.de
http://www.kernchemie.uni-mainz.de/radiopharmazie-roesch/117_ENG_HTML.php

Related links:
http://www.kernchemie.uni-mainz.de – Institute of Nuclear Chemistry
http://www.uni-mainz.de/presse/19663_ENG_HTML.php – press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than
EUR 2 million in a cyclotron and its building complex" (19 October 2015)

Weitere Informationen:

http://www.uni-mainz.de/presse/20010_ENG_HTML.php - press release ;
http://www.kernchemie.uni-mainz.de/eng/index.php - Institute of Nuclear Chemistry ;
http://www.uni-mainz.de/presse/19663_ENG_HTML.php - press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than EUR 2 million in a cyclotron and its building complex" (19 Oct. 2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>