Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetoreception molecule found in the eyes of dogs and primates

24.02.2016

Dog-like carnivores and some primate species may have a magnetic compass similar to that of birds.

Cryptochromes are light-sensitive molecules that exist in bacteria, plants and animals. In animals, they are involved in the control of the body’s circadian rhythms.


Certain photoreceptors in the eyes of dogs and macaques contain the molecule cryptochrome 1, which could act as a magnetic field detector.

Leo Peichl

In birds, cryptochromes are also involved in the light-dependent magnetic orientation response based on the Earth’s magnetic field: cryptochrome 1a is located in photoreceptors in birds’ eyes and is activated by the magnetic field.

Now researchers from the Max Planck Institute for Brain Research in Frankfurt have also detected cryptochrome 1 in photoreceptors in several mammalian species. Therefore, it is possible that these animals also have a magnetic sense that is linked to their visual system.

The perception of the Earth’s magnetic field is used by many animal species for orientation and navigation. A magnetic sense is found in some insects, fish, reptiles, birds and mammals, whereas humans do not appear to be able to perceive the Earth’s magnetic field.

The magnetic sense in migratory birds has been studied in considerable detail: unlike a boy scout’s compass, which shows the compass direction, a bird’s compass recognizes the inclination of the magnetic field lines relative to the Earth’s surface. Surprisingly, this inclination compass in birds is linked to the visual system as the magnetic field activates the light-sensitive molecule cryptochrome 1a in the retina of the bird’s eye. Cryptochrome 1a is located in the blue- to UV-sensitive cone photoreceptors and only reacts to the magnetic field if it is simultaneously excited by light.

Together with colleagues from the Ludwig-Maximilians-University Munich, the Goethe University Frankfurt, and the Universities of Duisburg-Essen and Göttingen, Christine Nießner and Leo Peichl from the Max Planck Institute for Brain Research in Frankfurt investigated the presence of cryptochrome 1 in the retinas of 90 species of mammal.

Mammalian cryptochrome 1 is the equivalent of bird cryptochrome 1a. With the help of antibodies against the light-activated form of the molecule, the scientists found cryptochrome 1 only in a few species from the carnivore and primate groups. As is the case in birds, it is found in the blue-sensitive cones in these animals.

The molecule is present in dog-like carnivores such as dogs, wolves, bears, foxes and badgers, but is not found in cat-like carnivores such as cats, lions and tigers. Among the primates, cryptochrome 1 is found in the orang-utan, for example. In all tested species of the other 16 mammalian orders, the researchers found no active cryptochrome 1 in the cone cells of the retina. .

The active cryptochrome 1 is found in the light-sensitive outer segments of the cone cells. It is therefore unlikely that it controls the animals’ circadian rhythms from there, as this control occurs in the cell nucleus which is located a considerable distance away. It is also unlikely that cryptochrome 1 acts as an additional visual pigment for colour perception. The researchers thus suspect that some mammals may use the cryptochrome 1 to perceive the Earth’s magnetic field. In evolutionary terms, the blue cones in mammals correspond to the blue- to UV-sensitive cones in birds. It is therefore entirely possible that the cryptochrome 1 in mammals has a comparable function.

Observations of foxes, dogs and even humans actually indicate that they can perceive the Earth’s magnetic field. For example, foxes are more successful at catching mice when they pounce on them in a north-east direction. “Nevertheless, we were very surprised to find active cryptochrome 1 in the cone cells of only two mammalian groups, as species whose cones do not contain active cryptochrome 1, for example some rodents and bats, also react to the magnetic field,” says Christine Nießner.

One possible explanation for this is that animals can also perceive the magnetic field in a different way: for example, with the help of magnetite, microscopic ferrous particles in cells. A magnetite-based magnetic sense functions like a pocket compass and does not require any light. Mole rats, which live in lightless tunnel systems, orient using this kind of compass. Birds also have an additional orientation mechanism based on magnetite, which they use to determine their position.

Many fundamental questions remain open in the research on the magnetic sense. Future studies will have to reveal whether the cryptochrome 1 in the blue cones is also part of a magnetic sense in mammals or whether it fulfils other tasks in the retina.

Original publication (Open Access):
Christine Nießner, Susanne Denzau, Erich Pascal Malkemper, Julia Christina Gross, Hynek Burda, Michael Winklhofer, Leo Peichl (2016) Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals. Scientific Reports 6, 21848; doi: 10.1038/srep21848.

Contact:
Dr. Christine Nießner
Max Planck Institute for Brain Research, Frankfurt/M.
Telephone: +49 69 96769-239
E-Mail: c.niessner@bio.uni-frankfurt.de

Prof. Dr. Leo Peichl
Max Planck Institute for Brain Research, Frankfurt/M.
Telephone: +49 69 96769-348
E-Mail: leo.peichl@brain.mpg.de

Weitere Informationen:

http://brain.mpg.de/news-events/news/news/archive/2016/february/article/magnetor...

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>