Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maelstrom quashes jumping genes

12.08.2008
Scientists have known for decades that certain genes (called transposons) can jump around the genome in an individual cell.

This activity can be dangerous, however, especially when it arises in cells that produce eggs and sperm. Such changes can threaten the offspring and the success of a species.

To ensure the integrity of these cells, nature developed a mechanism to quash this genetic scrambling, but how it works has remained a mystery. Now a team of scientists, including researchers at the Carnegie Institution's Department of Embryology, has identified a key protein that suppresses jumping genes in mouse sperm and found that the protein is vital to sperm formation.

"There is a tiny cell component that is unique to germ cells—the precursors to egg and sperm—called nuage, which means 'cloud' in French. Other researchers recently suspected that nuage was involved in keeping genes from jumping around in germ cells of the female fruit fly," explained Carnegie's Alex Bortvin, a senior author of the study. "But until this mouse study, no one knew for sure if it was involved in mammalian germ cells. To test if the mouse nuage played a similar role in mammals, we focused on a mouse protein called Maelstrom whose distant relative protein in the fruit fly was implicated in the other study."

In this research, published in the August 12th issue of Developmental Cell, the scientists first looked at where the protein Maelstrom resides during the formation of sperm. By marking the protein with a fluorescent antibody, they found that it was predominantly located in the cytoplasm, near the nucleus of the germ cell, at the nuage. To understand what Maelstrom does during the formation of sperm, the scientists created mutant mice that did not have the gene to produce the Maelstrom protein.

"We found that without the gene the process of meiosis was severely impaired," said Bortvin. "There was a profound defect in interactions of parental chromosomes, a process known as synapsis, leading to death of germ cells. This was clear evidence that the protein is vital to the formation of sperm."

The cause of such a defect became apparent when the researches looked at the behavior of transposons. "We observed massive flooding of the cytoplasm and nuclei of germ cells by transposons in the mutant mice," said Godfried van der Heijden, a Carnegie postdoctoral fellow and co-author. "This was the first time such a phenomenon was observed in germ cells of any species. Moreover, we found that the more transposons present in the nucleus, the more likely parental chromosomes would fail to locate each other during synapsis. Clearly, uncontrolled activity of jumping genes causes chromosomal mayhem in germ cells. Our results, coupled with work by Toshie Kai, a former Carnegie researcher studying the role of nuage in egg development in the fruit fly, suggest that nuage plays a central role in transposon silencing during the development of egg and sperm of many species from insects to mammals. "

The last surprise for the scientists was the observation that, contrary to the current view in the field, the silencing of jumping genes does not occur one time only in male germ cells during the mouse fetal development. Instead, every time a germline stem cell divides by meiosis to make sperm in adults the jumping genes are activated only to be silenced soon thereafter.

"This was a very puzzling finding," commented Bortvin. "Since the jumping genes are not silenced just once during the development of the fetus, but every time new sperm are produced during a mouse life, it's possible that germ cells may employ transposons in some fundamental way in male germline meiosis. This research is the first such clue of that possibility. We will be very busy over the next few years trying to crack this and other puzzles of Maelstrom's role in controlling meiosis and sperm production."

Alex Bortvin | EurekAlert!
Further information:
http://www.ciwemb.edu
http://www.CIW.edu

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>