Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Machine learning translates 'hidden' information to reveal chemistry in action


New method allows on-the-fly analysis of how catalysts change during reactions, providing crucial information for improving performance

Chemistry is a complex dance of atoms. Subtle shifts in position and shuffles of electrons break and remake chemical bonds as participants change partners. Catalysts are like molecular matchmakers that make it easier for sometimes-reluctant partners to interact.

A sketch of the new method that enables fast, 'on-the-fly' determination of three-dimensional structure of nanocatalysts. The neural network converts the x-ray absorption spectra into geometric information (such as nanoparticle sizes and shapes) and the structural models are obtained for each spectrum.

Credit: Brookhaven National Laboratory

Now scientists have a way to capture the details of chemistry choreography as it happens. The method--which relies on computers that have learned to recognize hidden signs of the steps--should help them improve the performance of catalysts to drive reactions toward desired products faster.

The method--developed by an interdisciplinary team of chemists, computational scientists, and physicists at the U.S. Department of Energy's Brookhaven National Laboratory and Stony Brook University--is described in a new paper published in the Journal of Physical Chemistry Letters. The paper demonstrates how the team used neural networks and machine learning to teach computers to decode previously inaccessible information from x-ray data, and then used that data to decipher 3D nanoscale structures.

Decoding nanoscale structures

"The main challenge in developing catalysts is knowing how they work--so we can design better ones rationally, not by trial-and-error," said Anatoly Frenkel, leader of the research team who has a joint appointment with Brookhaven Lab's Chemistry Division and Stony Brook University's Materials Science Department. "The explanation for how catalysts work is at the level of atoms and very precise measurements of distances between them, which can change as they react. Therefore it is not so important to know the catalysts' architecture when they are made but more important to follow that as they react."

Trouble is, important reactions--those that create important industrial chemicals such as fertilizers--often take place at high temperatures and under pressure, which complicates measurement techniques. For example, x-rays can reveal some atomic-level structures by causing atoms that absorb their energy to emit electronic waves. As those waves interact with nearby atoms, they reveal their positions in a way that's similar to how distortions in ripples on the surface of a pond can reveal the presence of rocks. But the ripple pattern gets more complicated and smeared when high heat and pressure introduce disorder into the structure, thus blurring the information the waves can reveal.

So instead of relying on the "ripple pattern" of the x-ray absorption spectrum, Frenkel's group figured out a way to look into a different part of the spectrum associated with low-energy waves that are less affected by heat and disorder.

"We realized that this part of the x-ray absorption signal contains all the needed information about the environment around the absorbing atoms," said Janis Timoshenko, a postdoctoral fellow working with Frenkel at Stony Brook and lead author on the paper. "But this information is hidden 'below the surface' in the sense that we don't have an equation to describe it, so it is much harder to interpret. We needed to decode that spectrum but we didn't have a key."

Fortunately Yuewei Lin and Shinjae Yoo of Brookhaven's Computational Science Initiative and Deyu Lu of the Center for Functional Nanomaterials (CFN) had significant experience with so-called machine learning methods. They helped the team develop a key by teaching computers to find the connections between hidden features of the absorption spectrum and structural details of the catalysts.

"Janis took these ideas and really ran with them," Frenkel said.

The team used theoretical modeling to produce simulated spectra of several hundred thousand model structures, and used those to train the computer to recognize the features of the spectrum and how they correlated with the structure.

"Then we built a neural network that was able to convert the spectrum into structures," Frenkel said.

When they tested to see if the method would work to decipher the shapes and sizes of well-defined platinum nanoparticles (using x-ray absorption spectra previously published by Frenkel and his collaborators) it did.

"This method can now be used on the fly," Frenkel said. "Once the network is constructed it takes almost no time for the structure to be obtained in any real experiment."

That means scientists studying catalysts at Brookhaven's National Synchrotron Light Source II (NSLS-II), for example, could obtain real-time structural information to decipher why a particular reaction slows down, or starts producing an unwanted product--and then tweak the reaction conditions or catalyst chemistry to achieve desired results. This would be a big improvement over waiting to analyze results after completing the experiments and then figuring out what went wrong.

In addition, this technique can process and analyze spectral signals from very low-concentration samples, and will be particularly useful at new high flux and high-energy-resolution beamlines incorporating special optics and high-throughput analysis techniques at NSLS-II.

"This will offer completely new methods of using synchrotrons for operando research," Frenkel said.


This work was funded by the DOE Office of Science (BES) and by Brookhaven's Laboratory Directed Research and Development program. Previously published spectra for the model nanoparticles used to validate the neural network were collected at the Advanced Photon Source (APS) at DOE's Argonne National Laboratory and the original National Synchrotron Light Source (NSLS) at Brookhaven Lab, now replaced by NSLS-II. CFN, NSLS-II, and APS are DOE Office of Science User Facilities. In addition to Frenkel and Timoshenko, Lu and Lin are co-authors on the paper.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Follow @BrookhavenLab on Twitter or find us on Facebook.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific paper: "Supervised Machine Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles"

Follow @brookhavenlab on Twitter and Facebook

An electronic version of this news release with related graphics

Media contacts: Karen McNulty Walsh, (631) 344-8350, or Peter Genzer, (631) 344-3174

Brookhaven National Laboratory
Media & Communications Office Phone: (631)344-8350
Bldg. 400 - P.O. Box 5000 Fax: (631)344-3368
Upton, NY 11973

Media Contact

Karen McNulty Walsh


Karen McNulty Walsh | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>