Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lymph nodes with location memory

14.08.2013
Just where in the body immune cells reach maturity is important for their later function

Regulatory T cells (or “Tregs” for short) play a central role in the human immune system: They guide all of the other immune cells and make sure they are tolerant of the body’s own cells and harmless foreign substances.


A regulatory T cell (blue) in electronmicroscopic magnification, interacting with bacteria cells (green). © HZI / Rohde

How Tregs become Tregs in the first place has been only incompletely understood – until now. Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, along with their colleagues at the Hannover Medical School (MHH) have recently gleaned important new insights into the workings of these cells.

As it turns out, origin is key – greater numbers of Tregs are produced within certain lymph nodes than in others. The researchers are now publishing their insights in the scientific journal Mucosal Immunology.

Without regulatory T cells, the human defence system would not work properly. Defender cells would be fiercely fighting off even harmless foreign substances like the parts of certain kinds of food, for example, as the immune system would simply not be “tolerant” towards these harmless substances. This tolerance is mediated through the Tregs – they are “tolerogenic.”

They instruct other immune cells as to which intruders really do need to be fought off and which ones do not pose a threat. However, even regulatory T cells have to first acquire this unique skill. What we have known for some time now is that they receive their “training” inside lymph nodes. “Lymph nodes are basically the immune system’s meeting points if you will,” says Prof. Jochen Hühn, Head of Experimental Immunology at the HZI. “Here, different types of immune cells meet up and also encounter antigen.” An antigen is a structure the immune system is able to recognize like component parts of pathogens or foods.

The researchers compared the development of murine T cells obtained from lymph nodes from various locations in the body, like the liver, intestine, and skin. In the process, they learned that more Tregs capable of teaching other cells to be tolerant of food antigens are made inside lymph nodes of the liver and intestine – a property the lymph nodes maintained even when they were transplanted to the skin. Conversely, skin lymph nodes did not become more tolerogenic if transplanted to the intestine. The HZI scientists made these discoveries together with their colleagues from Prof. Oliver Pabst’s team at the MHH Institute of Immunology.

Based on their observations, the scientists deduced that lymph node location influences the maturation process of the cells they contain. “The cells retained their original skills for weeks following the transplant,” says Dr. Sascha Cording, one of the study’s first authors. “You might say lymph nodes have something like a location-specific memory.”

And this in spite of the fact that all the various types of blood cells within a lymph node, including the immune cells, are constantly replaced, which means the lymph nodes’ location memory must be encoded somewhere in its stroma.

Additional experiments allowed the scientists to probe just how lymph nodes obtain their memory: Following birth, both the supply of vitamin A and the intestinal bacterial microflora figure prominently into this process. Without these two influencing factors, the lymph nodes simply forget about their origin and lose their tolerogenic properties.

These findings about lymph node imprinting apply to humans as well: An inadequate supply of vitamin A after birth or meddling with the baby’s developing microflora through administration of antibiotics can interfere with the lymph nodes’ long-term memory. “At what age this process happens in humans we cannot as of yet pinpoint with any certainty,” says Hühn. “Whether we’re talking about the first few days, weeks, or months even, is difficult to surmise.” The next step will be identifying the potential repercussions interfering with early imprinting of the immune system. Down the line, things like food allergies or autoimmune diseases might be the result.

Original publication:
Sascha Cording, Benjamin Wahl, Devesha Kulkarni, Himprya Chopra, Jörn Pezoldt, Manuela Buettner, Annegret Dummer, Usri Hadis, Markus Heimesaat, Stefan Bereswill, Christine Falk, Ulrike Bode, Alf Hamann, Diana Fleissner, Jochen Huehn, Oliver Pabst
The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes

Mucosal Immunology, 2013, DOI: mi.2013.54

The Helmholtz Centre for Infection Research:
At the Helmholtz Centre for Infection Research (HZI) in Braunschweig, scientists are studying microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.

The department “Experimental Immunology“ at the HZI studies the development of immune cells and the cellular and molecular mechanisms that keep the immune system in balance. The scientists pay particular attention to the so-called regulatory T cells.

http://dx.doi.org/mi.2013.54 - Link to the original publication

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de/en
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/lymph_nodes_with_location_memory/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>