Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lymph node roundabout

29.06.2012
Researchers probe origin of optimized antibodies against infections

An organism's ability to make new antibodies and use them to optimize its own immune defenses is of central importance in the fight against pathogens. In the case of severe infections, the overall relative speed with which an immune response proceeds could mean the difference between life and death.


Division and selection of B cells inside germinal center of lymph node (computer simulation): Blue cells are in the process of dividing, while green cells are in the process of being selected. Grey cells are in the process of leaving the germinal center. HZI / Meyer-Hermann

An international team of scientists, among them systems immunologist Prof. Michael Meyer-Hermann of the Helmholtz Centre for Infection Research (HZI) of Braunschweig, Germany, has now found that asymmetric division of antibody-producing B cells speeds up the body's immune defenses.

Early on, one daughter cell starts making antibodies while the other works at refining its own antibodies. The researchers' findings are due to be published in the upcoming issue of the scientific journal, Cell Reports.

Our immune system produces antibodies as effective long-term weapons against viral or bacterial infections or following vaccination. Antibodies are made in lymph nodes by specialized cells called B lymphocytes. In certain areas within a lymph node - called germinal centers - these B cells first undergo a process of selection.

B cells proliferate, mutate, and thereby change their antibodies. The immune system then checks to make sure whether or not these mutations translate into an improved immune response. If so, the cells in question are selected. The final outcome is the production of optimized antibodies capable of efficiently attaching to a particular pathogen and thereby inactivating it or labeling it for subsequent destruction by phagocytic scavenger cells.

"As part of this evolutionary process, the immune system takes turns between chance mutations and best-candidate-selection," explains Michael Meyer-Hermann, Director of the HZI’s Department of Systems Immunology and professor of systems biology at the Technische Universität Braunschweig. "We are calling it the 'recycling hypothesis'." All of this allows the immune system to make sure that any antibody it produces is maximally effective against the particular pathogen it is looking to fight.

A year and a half ago, an international team of New York-based and HZI researchers described this process of antibody optimization experimentally in great detail. However, up until now, the nature of the trade-off relationship between mutation and selection was unclear. "There has been a lot of debate about whether or not one should picture this process as a one-way street or as a roundabout," says Meyer-Hermann. As the study's first author, Meyer-Hermann has analyzed his colleagues' experimental results mathematically and determined that the earlier measurements are only compatible with the idea of a roundabout.

At the beginning of the year, a team of British researchers from London showed that B cell division is asymmetric, resulting in production of unequal daughter cells. At first, the purpose of this kind of asymmetric cellular division seemed uncertain. Meyer-Hermann's analyses suggest that one of the two daughter cells leaves the germinal center and starts producing antibodies while the other stays behind and undergoes another round of mutation and selection inside the germinal center. The mathematical model illustrates the advantage of this type of set-up. While one fairly specialized daughter cell is already making antibodies, its clone, which can be further optimized in the next round, stays behind. Compared with symmetric division, in asymmetric division there is a tenfold increase in the number of antibodies produced. In addition, the cell that stays behind in the germinal center stores information regarding a successful antibody it has produced, and the optimization process thus concludes more quickly. "This kind of time-saving in antibody production can be a real life-saver in the case of a dangerous infection," explains Michael Meyer-Hermann.

At the Helmholtz Centre for Infection Research in Braunschweig, scientists study microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.

The Department of Systems Immunology of the HZI, led by Prof. Michael Meyer-Hermann, addresses the mathematical modelling of immunological questions. It is part of the Braunschweig Integrated Centre for Systems Biology (BRICS), a joint research centre for systems biology founded by the HZI and the Technische Universität Braunschweig.

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>