Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lung cancer gene found

20.07.2011
Cancer biologists identify a driving force behind the spread of an aggressive type of lung cancer.

A major challenge for cancer biologists is figuring out which among the hundreds of genetic mutations found in a cancer cell are most important for driving the cancer’s spread.

Using a new technique called whole-genome profiling, MIT scientists have now pinpointed a gene that appears to drive progression of small cell lung cancer, an aggressive form of lung cancer accounting for about 15 percent of lung cancer cases.

The gene, which the researchers found overexpressed in both mouse and human lung tumors, could lead to new drug targets, says Alison Dooley, a recent PhD recipient in the lab of Tyler Jacks, director of MIT’s David H. Koch Institute for Integrative Cancer Research. Dooley is the lead author of a paper describing the finding in the July 15 issue of Genes and Development.

Small cell lung cancer kills about 95 percent of patients within five years of diagnosis; scientists do not yet have a good understanding of which genes control it. Dooley and her colleagues studied the disease’s progression using a strain of mice, developed in the laboratory of Anton Berns at the Netherlands Cancer Institute, that deletes two key tumor-suppressor genes, p53 and Rb.

“The mouse model recapitulates what is seen in human disease. It develops very aggressive lung tumors, which metastasize to sites where metastases are often seen in humans,” such as the liver and adrenal glands, Dooley says.

This kind of model allows scientists to follow the disease progression from beginning to end, which can’t normally be done with humans because the fast-spreading disease is often diagnosed very late. Using whole-genome profiling, the researchers were able to identify sections of chromosomes that had been duplicated or deleted in mice with cancer.

They found extra copies of a few short stretches of DNA, including a segment of chromosome 4 that turned out to include a single gene called Nuclear Factor I/B (NFIB). This is the first time NFIB has been implicated in small cell lung cancer, though it has been seen in a mouse study of prostate cancer. The gene’s exact function is not known, but it is involved in the development of lung cells.

Researchers in Jacks’ lab collaborated with scientists in Matthew Meyerson’s lab at the Dana-Farber Cancer Institute and the Broad Institute to analyze human cancer cells, and found that NFIB is also amplified in human small cell lung tumors.

That makes a convincing case that the gene truly is playing an important role in human small cell lung cancer, says Barry Nelkin, a professor of oncology at Johns Hopkins University School of Medicine, who was not involved in this research.

“The question, always, with mouse models is whether they can tell you anything about a human disease,” Nelkin says. “Some tell you something, but in others, there may be only a similarity in behavior, and the genetic changes are nothing like what is seen in humans.”

The NFIB gene codes for a transcription factor, meaning it controls the expression of other genes, so researchers in Jacks’ lab are now looking for the genes controlled by NFIB. “If we find what genes NFIB is regulating, that could provide new targets for small cell lung cancer therapy,” Dooley says.

Marta Buczek | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>