Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research finds protein that protects cancer cells from chemo and radiation therapy

25.03.2011
Research led by Daitoku Sakamuro, PhD, Assistant Professor of Pathology at LSU Health Sciences Center New Orleans and the LSUHSC Stanley S. Scott Cancer Center, has identified a protein that enables the activation of a DNA-repair enzyme that protects cancer cells from catastrophic damage caused by chemo and radiation therapy.

This protein, called c-MYC oncoprotein, can initiate and promote almost all human cancers and discovering the role it plays in cancer treatment resistance may lead to advances that save lives.

The work is published in the March 29, 2011 issue of Science Signaling, a publication of the American Association for the Advancement of Science. Although scientists have known that cancer cells can acquire resistance to DNA-damaging therapeutic agents, the genetic mechanisms through which this occurs have remained unclear until now.

Using the chemotherapy drug, cisplatin (which is commonly used as a first-line therapy for various cancers) to design a set of experiments, the research team found that the c-MYC oncoprotein increases cisplatin resistance by decreasing production of a c-MYC inhibitor called BIN1. BIN1 suppressed an enzyme essential for DNA repair, and the sensitivity of cancer cells to cisplatin depended upon BIN1 abundance. Overproducing the c-MYC oncoprotein repressed BIN1, blocking its life-saving action.

"Our study provides a potent and novel mechanism through which cancer acquires resistance to DNA damage," notes Dr. Sakamuro. "Inhibition of oncogenic c-MYC may provide an attractive strategy for cancer therapy in combination with DNA-damaging agents."

The researchers also propose that analyzing the levels of the c-MYC and BIN1 proteins or their mutational status may also serve as a valuable prognostic marker to determine whether a cancer will respond to an aggressive dose of therapeutic agents.

According to the American Cancer Society, about 1,529,560 new cancer cases were expected to be diagnosed in the United States in 2010, excluding noninvasive cancers as well as basal and squamous cell skin cancers. Cancer accounts for nearly one quarter of the deaths in the US with an estimated 569,490 cancer deaths expected last year.

"Our study will determine how we can re-sensitize malignant cancer cells to conventional DNA-damaging therapeutic agents and how we can minimize unnecessary side effects associated with cytotoxic chemo and radiation therapy," adds Dr. Sakamuro.

In addition to LSU Health Sciences Center New Orleans, the research team included scientists from Purdue University, West Lafayette, Indiana.

The research was supported by grants from the US Army Department of Defense, National Institutes of Health, Louisiana Cancer Research Consortium, Susan G. Komen Foundation, Walther Cancer Foundation, and Wendy Will Case Cancer Fund.

Dr. Sakamuro notes that 90% of this research was done at LSU Health Sciences Center New Orleans after Katrina. "When I attend conferences out of town, some people think New Orleans is still under water or struggling to recover. But the fact is the LSUHSC biomedical research facilities are fully recovered and a top notch environment for scientific discovery and success."

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC New Orleans consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, Schools of Allied Health Professions and Graduate Studies, and the only School of Nursing within an academic health center in the State of Louisiana. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>