Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of cell adhesion protein drives esophageal and oral cancers in mice

13.04.2011
Findings might lead to targets for therapy, early detection

Squamous cell cancers of the oral cavity and esophagus are common throughout the world, with over 650,000 cases of oral cancer each year and esophageal cancer representing the sixth most common cause of cancer death in men.

Research by University of Pennsylvania School of Medicine investigators has shown that a protein that helps cells stick together is frequently absent or out of place in these cancers, but it's unclear if its loss causes the tumors.

The investigators report that mice engineered to lack this protein, called p120-catenin (p120ctn), in the oral-upper digestive tract develop squamous cell cancers. The data, reported Cancer Cell, settle a 20-year debate and prove that p120ctn is a tumor-suppressor protein. What's more, the tumors that form in this mouse model closely resemble human disease and may point the way to novel therapies and early detection strategies.

"As the mice aged, what we saw was a dramatic evolution of precancer to cancer," says senior author Anil K. Rustgi, MD, the T. Grier Miller Professor of Medicine and Genetics and chief of Gastroenterology. "Both the precancerous growth, called dysplasia, and the cancer look exactly like what we see in humans. This is really exciting because it supports efforts for prevention and early detection, especially in people who drink alcohol and smoke cigarettes excessively and are at high risk for the disease in many regions of the world."

In healthy tissues, p120ctn is part of a protein complex that holds epithelial cells in tightly packed sheets. When p120ctn (or another of these cell adhesion proteins) is lost, a wide variety of cancers including those in prostate, breast, pancreas, colon, skin, bladder, and the endometrium, can result.

The cells lose their tight cell-cell contacts and can migrate more easily, which likely favors cancer spread and invasion of new cells. However, earlier attempts to test the effects of p120ctn loss on cancer formation were derailed because the animals cannot survive throughout embryonic development or immediately after birth without the protein.

To get around that problem, Rustgi and colleagues used a system called Cre-Lox that allows them to remove a particular gene in only a subset of tissues. In this case, the team deleted p120ctn from the oral cavity, esophagus and forestomach. The mutant animals survived through early development and birth, but by 4 to 6 months, most of the mutant animals had developed precancerous lesions and by 9 to 12 months, 70 percent of the mutant animals had full blown tumors. By contrast, none of the control littermates developed cancer.

The investigators noted that as the lesions developed, the tumor cells secreted inflammatory signals that acted like homing signals for immune cells called immature myeloid cells. These cells, in turn, helped to create a microenvironment that supported tumor growth. In fact, when the researchers blocked recruitment of the immune cells, they saw a dramatic reduction in tumor invasion.

Based on these observations, Rustgi thinks that targeting the immature myeloid cells may reverse or slow tumor grown in humans, although more work needs to be done in animal models before the approach is tested in the clinic.

Rustgi says that the mouse model will help test innovative therapies and early detection tests. He says that although he was born and raised in the United States, he was influenced by five years he spent as a child in India, where oral cancer is common due to the proportion of the population that chews betel nuts. "I remember, even as a little kid, I would see people with oral lesions," he says. "I didn't know what they were then, but it has always motivated me at a personal level. Esophageal cancer biology has also been a long-standing interest of mine because it affects so many underserved people in the inner cities in the United States."

The first author on the study is Douglas B. Stairs from the University of Pennsylvania. Co-authors on the study include Lauren J. Bayne, Ben Rhoades, Maria E. Vega, Todd J. Waldron, Jiri Kalabis, Jonathan P. Katz, J. Alan Dieh, and Robert H. Vonderheide from the University of Pennsylvania, Andres Klein-Szanto from Fox Chase Cancer Center in Philadelphia, Ju-Seog Lee from the University of Texas MD Anderson Cancer Center in Houston, and Albert B. Reynolds from Vanderbilt University in Nashville.

The study was funded through grants from the National Cancer Institute and the National Institute of Diabetes and Digestive and Kidney Diseases.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania â€" recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>