Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looping the Genome: how Cohesin does the Trick

20.04.2017

DNA molecules in the cells‘ nuclei are neatly folded into loops. This serves to wrap them up tightly, but also to bring distant gene regulatory sequences into close contact. In a paper published this week by NATURE, scientists at the Research Institute of Molecular Pathology (IMP) in Vienna describe how cohesin might do the trick.

Twenty years ago, the protein complex cohesin was first described by researchers at the IMP. They found that its shape strikingly corresponds to its function: when a cell divides, the ring-shaped structure of cohesin keeps sister-chromatids tied together until they are ready to separate.


Schematic illustration of the loop-extrusion mechanism (Copyright: IMP)

Apart from this important role during cell-divison, other crucial functions of cohesin have been discovered since - at the IMP and elsewhere. One of them is to help fold the DNA, which amounts to about two meters per nucleus, into a compact size by way of creating loops. “We think that the cohesin-ring clamps onto the DNA-strand to hold the loops in place”, says IMP-director Jan-Michael Peters whose team worked on the project.

The chromatin-loops are not folded at random. Their exact shape and position play an important role in gene regulation, as they bring otherwise distant areas into close contact. “For a long time, scientists were mystified by how regulatory elements – the enhancers – are able to activate distant genes. Now we think we know the trick: precisely folded loops allow enhancers to come very close to the genes they need to regulate”, says Peters. Research results point to cohesin as mediator of this process. Jan-Michael Peters and his team have already shown that the cohesin complex accumulates in areas where loops are formed.

Several scientists recently proposed a so-called “loop-extrusion mechanism” for the folding of chromatin. According to this hypothesis, cohesin is loaded onto DNA at a random site. The DNA strain is then fed through the ring-shaped complex until it encounters a molecular barrier. This element, a DNA-binding protein named CTCF, acts much like a knot tied in a rope and stops the extrusion-process at the correct position. Defined genome-sequences that were previously located far apart are now next to each other and can interact to regulate gene expression.

In NATURE online this week, IMP-researchers publish data that support the existence of such a mechanism. First author Georg Busslinger, a PhD-student in Jan-Michael Peters’ team, showed in mouse cells that cohesin is indeed translocated on DNA over long distances and that the movement depends on transcription, suggesting that this may serve as a ‘motor’.

“The loop extrusion hypothesis has opened up a whole new research area in cell biology and we will probably see many more papers published on this topic in the future”, comments Jan-Michael Peters. Understanding cohesin-function is also relevant from a medical perspective since a number of disorders, including certain cancers, are associated with malfunctions of the protein-complex.

Original Publication
Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N und Peters J-M: Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature Advance Online Publication, 19 April 2017, http://rdcu.be/rsMu.

A News-Feature on the topic was published by NATURE simultaneously: http://www.nature.com/news/dna-s-secret-weapon-against-knots-and-tangles-1.21838

Illustration
An illustration can be downloaded and used free of charge in connection with this press release: https://www.imp.ac.at/news-media/downloads/
Caption: Schematic illustration of the loop-extrusion mechanism (Copyright: IMP)

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Contact
Heidemarie Hurtl
IMP Communications
Research Institute of Molecular Pathology
+43 (0)1 79730 3625
hurtl@imp.ac.at

Weitere Informationen:

https://www.imp.ac.at/news/detail/article/looping-the-genome-how-cohesin-does-th...

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Further reports about: CTCF DNA Genome IMP Molecular Molekulare Pathologie biological phenomena cohesin protein complex

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>