The long and short of cell signaling

Like a telegraph transmission, the significance of a cellular signal can change greatly depending on whether it arrives as a brief ‘dot’ or a sustained ‘dash’. For example, transient activation of extracellular receptor kinase 1/2 (ERK) by epidermal growth factor (EGF) causes cells to divide, while prolonged ERK activation induced by heregulin (HRG) instructs these same cells to differentiate.

Cell biologists have struggled to untangle the relationship between this signaling network and cell fate, but a collaborative effort between Mariko Okada-Hatakeyama at the RIKEN Center for Allergy and Immunology in Yokohama and Boris Kholodenko at University College Dublin in Ireland has achieved an important breakthrough by pairing quantitative experiments with computational modeling1.

Okada-Hatakeyama’s team previously examined the expression of c-fos, a so-called ‘immediate early gene’ whose expression is induced shortly following ERK activation, and obtained somewhat contradictory findings2. ”Early gene expression time-course profiles were the same regardless of whether the upstream ERK signal is transient or sustained,” she says. “However, levels of Fos protein were ‘all or none’ for sustained and transient signals, respectively.”

Based on an initial interpretation of their computational model of this pathway, Okada-Hatakeyama, Kholodenko and colleagues proposed that the effects of both HRG and EGF on c-fos expression were modulated purely by dual-specificity phosphatases (DUSPs), enzymes that inhibit ERK’s capability to induce c-fos. However, experiments with a forced reduction of DUSP in cultured cells did not fully replicate these predictions. “There were long and serious discussions whether [our experiment] was working properly or the model was wrong,” says Okada-Hatakeyama.

This reassessment led to experiments that enabled the researchers to demonstrate the existence of a second, previously unknown mechanism for repression of c-fos expression that is triggered only in response to HRG. Together, these two ERK-activated ‘negative feedback’ systems appropriately control c-fos transcription in the process of cellular differentiation.

In parallel, their model also revealed how the combination of ERK-induced c-fos expression and sustained signaling activity by ERK outside the nucleus lead to steady production of c-Fos protein. This system architecture results in a highly stable signaling arrangement that filters out extraneous background noise and induces all-or-none output, according to Okada-Hatakeyama. “We learned from this study that cells possess very simple but robust system structures that can fight against unwanted perturbations,” she says. “This cellular signaling network is still a ‘black box’ and what we can do [with computational modeling] is very much limited … but we hope to [untangle] the cell decision program someday.”

The corresponding author for this highlight is based at the Laboratory for Cellular Systems Modeling, RIKEN Research Center for Allergy and Immunology

Journal information

1. Nakakuki, T., Birtwistle, M.R., Saeki, Y., Yumoto, N., Ide, K., Nagashima, T., Brusch, L., Ogunnaike, B.A., Okada-Hatakeyama, M. & Kholodenko, B.N. Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 141, 884–896 (2010)

2. Nagashima, T., Shimodaira, H., Ide, K., Nakakuki, T., Tani, Y., Takahashi, K., Yumoto, N., & Hatakeyama, M. Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. The Journal of Biological Chemistry 282, 4045–4056 (2007)

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors