Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long Fuse

17.06.2010
Communication through chemistry: “Fuses” convey information for hours

We currently transmit information electronically; in the future we will most likely use photons. However, these are not the only alternatives. Information can also be transmitted by means of chemical reactions.

George M. Whitesides and his colleagues at Harvard University in Cambridge (Massachusetts, USA) have now developed a concept that allows transmission of alphanumeric information in the form of light pulses with no electricity: the “infofuse”. As the researchers report in the journal Angewandte Chemie, it may be possible to use this principle to develop systems that function under conditions in which electronics or batteries do not work.

The researchers previously developed an infofuse made of nitrocellulose strips. The strips were covered with patterns of dots made of salts of the elements lithium, rubidium, and cesium. When the strip is ignited, the flame travels forward and reaches the dots one after the other. The heat causes the elements to emit light at characteristic wavelengths. The dots may contain combinations of three different salts, resulting in seven possible combinations. A combination of two dots thus allows for 7x7 = 49 different signals.

The problem was that the flame tended to go out. This can be avoided by using a different material as substrate that does not conduct heat away as efficiently, such as fiberglass. Alternatively, the strips can be placed over a “trench” or crimped, so that they no longer lie flat on the surface. This allows for less heat transfer to the substrate.

Another problem with the older system was that the flame front progressed far too quickly, allowing for only short transmission times. Nitrocellulose strips burn at a rate of several centimeters a second. Says Whitesides, “a fuse length of 2.6 km would be required to transmit for 24 hours.” The solution was a dual speed arrangement. Branches of the fast-burning infofuse are attached to a slow-burning central fuse. The distance between branches can be varied as needed, and the flame front progresses at only 1 to 2 m per second. This allows information to be repeated several times or different information to be transmitted periodically.

A color camera or fiber optic cable coupled to a spectrometer could receive the signal over a distance of 30 m in daylight. “We hope that it will be possible to develop a light, portable, non-electric system of information transmission that can be integrated into modern information technology,” says Whitesides. “For example, it could be used to gather and transmit environmental data or to send messages by emergency services.”

Author: George M. Whitesides, Harvard University, Cambridge (USA), http://gmwgroup.harvard.edu/contact.html

Title: Long-Duration Transmission of Information with Infofuses

Angewandte Chemie International Edition 2010, 49, No. 27, 4571–4575, Permalink to the article: http://dx.doi.org/10.1002/anie.201001582

George M. Whitesides | Angewandte Chemie
Further information:
http://gmwgroup.harvard.edu/contact.html
http://pressroom.angewandte.org
http://dx.doi.org/10.1002/anie.201001582

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>