Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long bone shape: a family affair

04.10.2011
Although humans and chimpanzees move quite differently, muscle attachment sites at their thighbones are similar. This result, which has recently been published by anthropologists of Zurich University in the scientific journal «Anatomical Record», has major consequences for the interpretation of fossil hominin finds.

PhD student Naoki Morimoto, member of the Computer-Assisted Paleoanthropology group of Ch. Zollikofer and M. Ponce de León, and junior author of the study, was surprised by his own findings. Although humans are bipeds, and chimps are quadrupeds, muscle attachment sites at their thighbones are quite similar.


Great ape virtopsy: virtual preparation of skin, muscles, and bone of a young chimpanzee. UZH


Muscle attachment areas on the right thighbone (seen from lateral-posterior): During human-chimp evolution, the hip extensor muscle glutaeus maximus (GM) has «moved» from below to above a conspicuous bony crest (black arrowheads). In gorillas the GM muscle is situated below the crest, together with the vastus lateralis (VL) muscle. UZH

Attachment sites differ substantially, however, between chimpanzees and gorillas, although these great apes species move similarly. Interestingly, Morimoto’s results are in line with insights from genetics: humans and chimps are evolutionary sister species, while gorillas are more distant relatives, like cousins. Morimoto explains the seeming paradox of his results: this is not «form follows function», but «form follows family».

Functional inferences: a cautionary tale

The new findings have far-reaching implications for the interpretation of fossil hominin remains. Fossil thighbone shafts are often well preserved, but it now appears that inferences about locomotor behavior must be drawn with caution, while inferences about the fossil’s evolutionary relationships might be more straightforward. Anthropologist Ch. Zollikofer explains: «the transition from great-ape-like quadrupedal to human-like bipedal locomotion is accompanied by several changes in the hip and thighbones, but currently we cannot infer functional change from structural change with any certainty.» And he asks the next big question of paleoanthropology: «Why did the last common ancestor of humans and chimps, who might have lived 7-8 million years ago, evolve novel thighbone features?»

Virtual dissection

To get a detailed look at great ape musculoskeletal anatomy, the research team combined high-resolution computed tomography with computer-assisted virtual dissection. Great ape bodies are a scarce and valuable resource for scientific studies, and anthropologists are increasingly reluctant to «sacrifice» them for anatomical dissections. Virtual autopsy – or Virtopsy – is the method of choice. Virtopsy was pioneered by Michael Thali (Institute of Forensic Science, UZH), and is now used in forensic institutes worldwide. Anthropological virtopsy has enormous potential, as it permits virtual dissection of one single specimen by many different researchers, and according to many different criteria, without actually deteriorating the orginal body. Moreover, great ape virtopsy gives an immediate picture of the spatial relationships between soft and hard tissues (bones) of one and the same individual. Traditionally, bone morphology was studied on dry-skeleton specimens, and subsequently combined with muscle data obtained from dissections of other animals.

Acquiring 3D tomographic data of great ape bodies, however, is a complex endeavor, which requires collaboration across disciplines. To reach these goals, the «Visible Ape Consortium» was established, which has become an example of efficient transdisciplinary research at UZH (see below).

Literature:

Naoki Morimoto, Marcia S. Ponce De Leόn, Takeshi Nishimura and Christoph P.E. Zollikofer: Femoral Morphology and Femoropelvic Musculoskeletal Anatomy of Humans and Great Apes: A Comparative Virtopsy Study, in: The Anatomical Record, 294:1433–1445 (2011), DOI 10.1002/ar.21424

The Visible Ape Consortium:
Dr. Marcia Ponce de León and Prof. Christoph Zollikofer of the Anthropological Institute of the University of Zurich initiated the Visible Ape Consortium to acquire, archive and analyze 3D tomographic data of great ape bodies for anatomical and morphological research. Currently the following institutions form part of the Consortium: the Anthropological Institute, the Department of Diagnostic Imaging of the Vetsuisse Faculty (Prof. P. Kircher), the Institute of Forensic Science (Prof. M. Thali), the Center for Integrative Human Physiology (Prof. M. Gassmann), and Zoo Zurich. Close collaboration has been established with the Kyoto University Primate Research Institute in Inuyama, Japan (Dr. T. Nishimura).
Contact
Naoki Morimoto
Anthropological Institute
University of Zurich
Tel. +41 44 635 54 41
E-Mail: morimoto@aim.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht RUDN chemist tested a new nanocatalyst for obtaining hydrogen
18.10.2018 | RUDN University

nachricht Dandelion seeds reveal newly discovered form of natural flight
18.10.2018 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>