Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loneliness impacts DNA repair: The long and the short of telomeres

07.04.2014

Telomeres are DNA-protein complexes that function as protective caps at the ends of chromosomes. Biologists and veterinarians at the Vetmeduni Vienna recently examined the telomere length of captive African grey parrots. 

They found that the telomere lengths of single parrots were shorter than those housed with a companion parrot, which supports the hypothesis that social stress can interfere with cellular aging and a particular type of DNA repair. It suggests that telomeres may provide a biomarker for assessing exposure to social stress. The findings have been published in the open access journal PLOS ONE.


Lonley parrots have shorter telomers than those living in groups.

Photo: Denise Aydinonat

In captivity, grey parrots are often kept in social isolation, which can have detrimental effects on their health and wellbeing. So far there have not been any studies on the effects of long term social isolation from conspecifics on cellular aging. Telomeres shorten with each cell division, and once a critical length is reached, cells are unable to divide further (a stage known as ‘replicative senescence’).

Although cellular senescence is a useful mechanism to eliminate worn-out cells, it appears to contribute to aging and mortality. Several studies suggest that telomere shortening is accelerated by stress, but until now, no studies have examined the effects of social isolation on telomere shortening.

Using molecular genetics to assess exposure to stress

To test whether social isolation accelerates telomere shortening, Denise Aydinonat, a doctorate student at the Vetmeduni Vienna, conducted a study using DNA samples that she collected from African grey parrots during routine check-ups. African greys are highly social birds, but they are often reared and kept in isolation from other parrots (even though such conditions are illegal in Austria).

She and her collaborators compared the telomere lengths of single birds versus pair-housed individuals with a broad range of ages (from 1 to 45 years). Not surprisingly, the telomere lengths of older birds were shorter compared to younger birds, regardless of their housing. However, the important finding of the study was that single-housed birds had shorter telomeres than pair-housed individuals of the same age group.

Reading signs of stress by erosion of DNA

“Studies on humans suggest that people who have experienced high levels of social stress and deprivation have shorter telomeres,” says Dustin Penn from the Konrad Lorenz Institute of Ethology at the Vetmeduni Vienna. “But this study is the first to examine the effects of social isolation on telomere length in any species.” Penn and his team previously conducted experiments on mice, which were the first to show that exposure to crowding stress causes telomere shortening.

He points out that this new finding suggests that both extremes of social conditions affect telomere attrition. However, he also cautions “further ‘longitudinal’ studies, in which changes in telomeres of the same individuals over time, are needed to investigate the consequences of stress on telomere shortening and the subsequent effects on health and longevity.”

Co-author, Franz Schwarzenberger from the Department of Biomedical Sciences at the Vetmeduni Vienna, points out that their results are exciting because they suggest, “telomere length may be useful as a ‘biomarker’ that enables to assess an individual’s exposure to chronic social stress.”

The article “Social isolation shortens telomeres in African Grey Parrots (Psittacus erithacus erithacus)” by Aydinonat, D., Penn, D.J.*, Smith, S., Moodley, Y. Hoelzl, F., Knauer, F. & Schwarzenberger, F. was published online on 4 April 2014 in the open access journal PLOS ONE.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna is the only academic and research institution in Austria that focuses on the veterinary sciences. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dustin Penn, PhD
Konrad Lorenz Institute of Ethology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 4890915-823
dustin.penn@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: DNA Ethology Medicine Vetmeduni effects parrots senescence telomeres

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>