Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LJI develops new approach to identify genes poised to respond in asthma patients

09.07.2014

Study searches active genetic neighborhoods for genes that can be targeted to treat asthmatic disease

In a study published yesterday in the scientific journal Nature Immunology, a group at the La Jolla Institute (LJI) led by Pandurangan Vijayanand, Ph.D. identify new genes that likely contribute to asthma, a disease that currently affects over 200 million people world wide.

An organism’s genetic material, also known as its genome, can be divided into small sections or ‘neighborhoods.’ Scientists can determine which genetic neighborhoods in a cell are active, or primed for gene production, by looking for a marker on the genome called an enhancer. An enhancer can increase the production of genes in its immediate neighborhood.

The goal of the published study is to find genes whose neighborhoods are active in diseased cells, but inactive in healthy cells. Genes that are in active neighborhoods in diseased cells are likely to contribute to disease, and can potentially be targeted with drug treatments.

In order to find genetic neighborhoods that are active in asthmatic disease, the scientists in Vijayanand’s group focus their experiments on memory cells, which develop abnormally in asthma patients. Memory cells are responsible for quickly responding to foreign substances called antigens that the host has been exposed to previously. Air passage inflammation, which characterizes asthma, is mediated by an overactive response to inhaled antigens by memory cells.

By applying his technique in small populations of abnormal memory cells, Vijayanand highlights 33 genetic neighborhoods that are highly active in diseased cells, but inactive in healthy cells, shifting the focus of asthma research to specific genes that are located in these neighborhoods.

Genome-wide association studies (GWAS) that are less precise, have previously identified 1,500 potential target regions associated with asthmatic disease. According to Vijayanand, these targets are too numerous to study individually, and as a result, the field has remained focused on just a few molecules for discovery of new asthma treatments.

Using their approach, Vijayanand’s team searched the 1,500 targets for those that have the greatest likelihood of contributing to asthmatic disease. “Our unbiased and hypothesis-free approach has revealed a staggering but manageable number of new molecules that could play a role in asthma, and thus are potentially novel therapeutic targets,” said Vijayanand.

Vijayanand and his team completed the study using different amounts of cells from the blood of healthy individuals and asthmatic patients. They did so in order to determine the smallest number of cells that were required for their technique, and found that it works with as little as 10,000 cells, which is significantly less than the millions of cells required to use other methods. Vijayanand envisions using this technique in situations where access to cells is limited, such as tumor biopsy for cancer.

The frequency of asthma is rising across the developed world as well as in several large developing countries. Treatment for asthma usually includes long-term nonspecific medication, as there is no cure at present.

Vijayanand says this study provides information that can be the starting point for many avenues of research and treatment. He says, “our study provides a rich and comprehensive resource that will be useful to the scientific community, enabling investigators to conduct their own detailed studies of the functional significance of the novel genes and enhancers that we have identified.”

The findings were published in a Nature Immunology paper entitled “Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility.” The study was supported in part by the National Institutes of Health, under grant numbers R01 HL114093 and U19 AI100275. Researchers from other institutions also contributed to this study, including those from Southampton National Institute for Health Research and University of California, San Francisco.

ABOUT LA JOLLA INSTITUTE
Founded in 1988, the La Jolla Institute for Allergy and Immunology is a biomedical research nonprofit focused on improving human health through increased understanding of the immune system. Its scientists carry out research seeking new knowledge leading to the prevention of disease through vaccines and the treatment and cure of infectious diseases, cancer, inflammatory and autoimmune diseases such as rheumatoid arthritis, type 1 (juvenile) diabetes, Crohn's disease and asthma. La Jolla Institute's research staff includes more than 150 Ph.D.s and M.D.s. To learn more about the Institute's work, visit www.liai.org.

Daniel Moyer | Eurek Alert!
Further information:
http://www.liai.org/pages/LJI_Develops_New_Approach_to_Identify_Genes_in_Asthma_Patients

Further reports about: Allergy Immunology Jolla asthmatic disease diseases genes identify treatments

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>