Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living Microprocessor Tunes in to Feedback

13.06.2012
What keeps the machinery for chopping functional pieces out of certain long RNA strands from cutting up the wrong kinds of RNA?

MicroRNAs (miRNAs) – tiny strands of non-protein-coding RNAs – start off as long strands of precursor miRNAs. These long strands get chopped up by a special kind of machinery, the “Microprocessor” complex, to transform them into their shorter functional form. The resulting miRNAs bind to messenger RNA (mRNAs) molecules, inhibiting their protein production capacity and thus regulating the levels of hundreds of different proteins.

But the Microprocessor complex can also cut up other forms of RNA, such as mRNAs, which sometimes generate a transient structure that resembles the target site of miRNAs. Cleaving the wrong RNAs could prove disastrous for the organism.

In a paper recently published in Nature Structural and Molecular Biology, Dr. Eran Hornstein, Prof. Naama Barkai and former Ph.D. students Drs. Omer Barad and Mati Mann of the Molecular Genetics Department focus on understanding how the Microprocessor machinery balances the interplay between efficiency and specificity in the production of miRNAs. “On the one hand, it should not be overly efficient, as this may come at the cost of also cleaving unwanted nonspecific RNA substrates. On the other hand, it should not be too ‘picky’ because exaggerated specificity comes with the risk of not sufficiently processing genuine miRNAs,” says Hornstein.
In an interdisciplinary project, the scientists used mathematical modeling to characterize the Microprocessor system and then tested their theories in cells. They predicted that the balance between efficiency and specificity would be maintained via a feedback loop in which the Microprocessor detects the amount of precursor miRNA available in the cell and alters its own production accordingly.

Checking this premise in mouse and human tissue, the researchers were able to show that the Microprocessor is indeed attuned to levels of precursor miRNA, upping its own production if the cell is inundated with precursor miRNA, or halting production in response to a decrease in the flow of precursors. This is achieved by the digestion of Dgcr8 mRNA, which structurally mimics miRNA. By keeping levels in line with precursor miRNAs, the Microprocessor thus reduces its chances of chopping off-target RNAs.
Since small RNAs are produced synthetically as possible new therapies for a number of diseases, this research may direct efforts to efficiently produce such therapies in the future. In addition, many other biological systems need to balance efficiency with specificity, and the team’s findings suggest that many may do so in a similar way.

Dr. Eran Hornstein’s research is supported by Dr. Sidney Brenner and Friends; the Carolito Stiftung; the Nella and Leon Benoziyo Center for Neurological Diseases; the Y. Leon Benoziyo Institute for Molecular Medicine; the Nathan, Shirley, Philip and Charlene Vener New Scientist Fund; the estate of Fannie Sherr; the estate of Lola Asseof; Maria Halphen, France; the Julius and Ray Charlestein Foundation; the Legacy Heritage Fund; the Kekst Family Institute for Medical Genetics; the David and Fela Shapell Family Center for Genetic Disorders Research; the Helen and Martin Kimmel Institute for Stem Cell Research; the Crown Human Genome Center; the Celia Benattar Memorial Fund for Juvenile Diabetes; the Fraida Foundation; and the Wolfson Family Charitable Trust. Dr. Hornstein is the incumbent of the Helen and Milton A. Kimmelman Career Development Chair.

Prof. Naama Barkai’s research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Jeanne and Joseph Nissim Foundation for Life Sciences Research; Lorna Greenberg Scherzer, Canada; the Carolito Stiftung; the European Research Council; the estate of Hilda Jacoby-Schaerf; and the estate of John Hunter. Prof. Barkai is the incumbent of the Lorna Greenberg Scherzer Professorial Chair.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish
24.02.2020 | National University of Ireland Galway

nachricht Shaping the rings of molecules
24.02.2020 | University of Montreal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>