Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going live – immune cell activation in multiple sclerosis

23.05.2013
New indicator molecules visualise the activation of auto-aggressive T cells in the body as never before

Biological processes are generally based on events at the molecular and cellular level. To understand what happens in the course of infections, diseases or normal bodily functions, scientists would need to examine individual cells and their activity directly in the tissue.


Using a calcium sensor shows that the calcium concentration in T cells (green) changes when it interacts with dendritic cells (red) [top]. The activation of the T cell (red) can be illustrated by the migration of the NFAT signal protein (green) from the cell plasma to the cell nucleus [bottom].
© MPI of Neurobiology

The development of new microscopes and fluorescent dyes in recent years has brought this scientific dream tantalisingly close. Scientists from the Max Planck Institute of Neurobiology in Martinsried have now presented not one, but two studies introducing new indicator molecules which can visualise the activation of T cells. Their findings provide new insight into the role of these cells in the autoimmune disease multiple sclerosis (MS). The new indicators are set to be an important tool in the study of other immune reactions as well.

Inflammation is the body’s defence response to a potentially harmful stimulus. The purpose of an inflammation is to fight and remove the stimulus – whether it be disease-causing pathogens or tissue. As an inflammation progresses, significant steps that occur thus include the recruitment of immune cells, the interactions of these cells in the affected tissue and the resulting activation pattern of the immune cells. The more scientists understand about these steps, the better they can develop more effective drugs and treatments to support them. This is particularly true for diseases like multiple sclerosis. In this autoimmune disorder cells from the body’s immune system penetrate into the central nervous system where they cause massive damage in the course of an inflammation.

In order to truly understand the cellular processes involved in MS, scientists ideally need to study them in real time at the exact location where they take place – directly in the affected tissue. In recent years, new microscopic techniques and fluorescent dyes have been developed to make this possible for the first time. These coloured indicators make individual cells, their components or certain cell processes visible under the microscope. For example, scientists from the Max Planck Institute of Neurobiology have developed a genetic calcium indicator, TN-XXL, which the cells themselves form, and which highlights the activity of individual nerve cells reliably and for an unlimited time. However, the gene for the indicator was not expressed by immune cells. That is why it was previously impossible to track where in the body and when a contact between immune cells and other cells led to the immune cell’s activation.

Now the Martinsried-based neuroimmunologists report two major advances in this field simultaneously. One is their development of a new indicator which visualises the activation of T cells. These cells, which are important components of the immune system, detect and fight pathogens or substances classified as foreign (antigens). Multiple sclerosis, for example, is one of the diseases in which T cells play an important role: here, however, they detect and attack the body’s brain tissue. If a T cell detects "its own" antigen, the NFAT signal protein migrates from the cell plasma to the nucleus of the T cell. "This movement of the NFAT shows us that the cell has been activated, in other words it has been ‘armed’," explains Marija Pesic, lead author of the study published in the Journal of Clinical Investigation. "We took advantage of this to bind the fluorescent dye called GFP to the NFAT, thereby visualising the activation of these cells." The scientists are thus now able to conclusively show in the organism whether an antigen leads to the activation of a T cell. The new indicator is an important new tool for researching autoimmune diseases and also for studying immune cells during their development, during infections or in the course of tumour reactions.

In parallel to these studies, the neuroimmunologists in Martinsried developed a slightly different, complementary method. They modified the calcium indicator TN-XXL to enable, for the first time, T cell activation patterns to be observed live under the microscope, even while the cells are wandering about the body. When a T cell detects an antigen, a rapid rise in the calcium concentration within the cell ensues. The TN-XXL makes this alteration in the calcium level apparent by changing colour, giving the scientists a direct view of when and where the T cells are being activated.

"This method has enabled us to demonstrate that these cells really can be activated in the brain," says a pleased Marsilius Mues, lead author of the study which has just been published in Nature Medicine. Until now, scientists had only suspected this to be the case. In the animal model of multiple sclerosis, scientists are now able to track not only the migration of the T cells, but also their activation pattern in the course of the disease. Initial investigations have already shown, besides the expected activation by antigen detection, that numerous fluctuations in calcium levels also take place which bear no relation to an antigen. "These fluctuations can tell us something about how potent the T cell is, how strong the antigen is, or it may have something to do with the environment," speculates Marsilius Mues. These observations could indicate new research approaches for drugs – or they could even show whether a drug actually has an effect on T cell activation.

Contact

Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514
Email: merker@­neuro.mpg.de
Prof. Dr. Hartmut Wekerle
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3550
Fax: +49 89 8578-3790
Email: hwekerle@­neuro.mpg.de
Original publications
Marija Pesic, Ingo Bartholomäus, Nikolaos I. Kyratsous, Vigo Heissmeyer, Hartmut Wekerle, Naoto Kawakami
2-photon imaging of phagocyte-mediated T cell activation in the CNS
The Journal of Clinical Investigation, February 1, 2013
Marsilius Mues, Ingo Bartholomäus, Thomas Thestrup, Oliver Griesbeck, Hartmut Wekerle, Naoto Kawakami, Gurumoorthy Krishnamoorthy
Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator

Nature Medicine, May 12, 2013

Dr. Stefanie Merker | Max-Planck-Institute
Further information:
http://www.mpg.de/7261098/immune-cell-activation-MS?filter_order=L&research_topic=

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>