Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid crystal liver

02.07.2019

First and new realistic 3D model of the liver lobule since the year 1949

In 1949, Hans Elias pioneered the structural analysis of the mammalian liver tissue and proposed a model of the liver lobule, which is used to this day in textbooks. Almost 70 years later, researchers at the Max Planck Institute of Molecular Cell Biology and Genetics, the MPI for the Physics of Complex Systems, & the TU Dresden took advantage of novel microscopy developments, computer-aided image analysis, & 3D tissue reconstruction and created a new realistic 3D model of liver organization. Remarkably, they discovered that the liver features an organized structure, similar to liquid crystals.


Reconstruction of the main structures forming the liver lobule: Central (CV) and Portal veins (PV), sinusoidal (magenta) and bile canaliculi (green) networks, and hepatocytes (random colours).

Morales-Navarrete et al. / MPI-CBG

In 1949, Hans Elias pioneered the structural analysis of the mammalian liver tissue and proposed a model of the basic structural unit, the liver lobule, which is used to this day in textbooks. However, this simplified 3D model could only show in a limited way how liver tissue is structured and formed.

Almost 70 years later, researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), the MPI for the Physics of Complex Systems (MPI-PKS), and the TU Dresden took advantage of novel microscopy developments, computer-aided image analysis, and 3D tissue reconstruction and created a new realistic 3D model of liver organization. Remarkably, they discovered that the liver features an organized structure, similar to liquid crystals. These findings are published in the journal eLife.

The liver is the largest metabolic organ of the human body with a complex tissue architecture. It is vital for blood detoxification and metabolism. Blood flows through blood vessels to the liver cells, called hepatocytes, which take up and metabolize substances and secrete bile for discharge into the intestine. How do cells interact with each other and self-organize to form a functional tissue?

For this, its three-dimensional structure must be known. The architecture of tissues and its relation to their function are still poorly understood today. Thus, an interdisciplinary team of biologists, physicists and mathematicians at the MPI-CBG, the MPI-PKS, and the TU Dresden aimed to create a new model of the liver that would be fit to explain how cells collectively form liver tissue and, therefore, a healthy organ.

A structural model of the liver lobule was made and hand-drawn by the anatomist Hans Elias in 1949. Since then, very little progress has been made. To solve this outstanding problem, the Dresden researchers computationally reconstructed the three-dimensional geometry of the tissue from microscopy images of mouse liver tissue and analyzed it applying concepts from Physics.

Surprisingly, given the amorphous appearance of liver tissue, the researchers found that the hepatocytes follow a liquid-crystal order, similar to the one making electronic displays. Liquid crystals are less structured than crystals but are more organized than molecules in a liquid.

Hernán Morales-Navarrete, postdoctoral researcher in the lab of MPI-CBG director Marino Zerial, explains: “Our results suggest that liver cells and sinusoids, which are the smallest blood vessels in the body, communicate with each other in both directions: The blood vessels instruct the hepatocytes and the hepatocytes send signals back to the blood vessels to establish and preserve the liquid-crystal order.

This bi-directional communication is a central part of the self-organization of liver tissue.” Such an architecture gives the tissue function and robustness against local damage.

Marino Zerial, who is also affiliated with the Center for Systems Biology Dresden (CSBD), summarizes: “We discovered novel design principles of liver tissue organization. Only if we understand how the liver tissue is formed to create a functional organ, can we understand abnormalities and malfunctions in humans better. Furthermore, our study provides a general framework, beyond the liver tissue, for clarifying the rules of how cells interact with each other and assemble into tissues.”


About the MPI-CBG
The Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) is one of over 80 institutes of the Max Planck Society, an independent, non-profit organization in Germany. 600 curiosity-driven scientists from over 50 countries ask: How do cells form tissues? The basic research programs of the MPI-CBG span multiple scales of magnitude, from molecular assemblies to organelles, cells, tissues, organs, and organisms.

About the MPI-PKS
The goal of the Max Planck Institute for the Physics of Complex Systems (MPI-PKS) is to contribute to the research in the field of complex systems in a globally visible way and to promote it as a subject. Furthermore, the MPI-PKS invests into passing on the innovation generated in the field of complex systems as quickly and efficiently as possible to the young generation of scientists at universities. This requires a high degree of creativity, flexibility and communication with universities. The concept rests on two pillars: in-house research and a program for visiting scientists. The latter not only covers individual scholarships for guest scientists at the institute, but also 20 international workshops and seminars per year.

About the CSBD
The Center for Systems Biology Dresden (CSBD) is a cooperation between the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), the Max Planck Institute for the Physics of Complex Systems (MPI-PKS), and the TU Dresden. The interdisciplinary center brings physicists, computer scientists, mathematicians, and biologists together. The scientists develop theoretical and computational approaches to biological systems across different scales, from molecules to cells and from cells to tissues.

Wissenschaftliche Ansprechpartner:

Prof. Marino Zerial
+49 (0) 351 210 1100
zerial@mpi-cbg.de

Originalpublikation:

Hernán Morales-Navarrete, Hidenori Nonaka, Andre Scholich, Fabián Segovia-Miranda, Walter de Back, Kirstin Meyer, Roman L Bogorad, Victor Koteliansky, Lutz Brusch, Yannis Kalaidzidis, Frank Jülicher, Benjamin M Friedrich, Marino Zerial: “Liquid-crystal organization of liver tissue” eLife, 17. June, 2019. doi: 10.7554/eLife.44860

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik
Further information:
https://www.mpi-cbg.de/de/home/

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>