Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid crystal liver

02.07.2019

First and new realistic 3D model of the liver lobule since the year 1949

In 1949, Hans Elias pioneered the structural analysis of the mammalian liver tissue and proposed a model of the liver lobule, which is used to this day in textbooks. Almost 70 years later, researchers at the Max Planck Institute of Molecular Cell Biology and Genetics, the MPI for the Physics of Complex Systems, & the TU Dresden took advantage of novel microscopy developments, computer-aided image analysis, & 3D tissue reconstruction and created a new realistic 3D model of liver organization. Remarkably, they discovered that the liver features an organized structure, similar to liquid crystals.


Reconstruction of the main structures forming the liver lobule: Central (CV) and Portal veins (PV), sinusoidal (magenta) and bile canaliculi (green) networks, and hepatocytes (random colours).

Morales-Navarrete et al. / MPI-CBG

In 1949, Hans Elias pioneered the structural analysis of the mammalian liver tissue and proposed a model of the basic structural unit, the liver lobule, which is used to this day in textbooks. However, this simplified 3D model could only show in a limited way how liver tissue is structured and formed.

Almost 70 years later, researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), the MPI for the Physics of Complex Systems (MPI-PKS), and the TU Dresden took advantage of novel microscopy developments, computer-aided image analysis, and 3D tissue reconstruction and created a new realistic 3D model of liver organization. Remarkably, they discovered that the liver features an organized structure, similar to liquid crystals. These findings are published in the journal eLife.

The liver is the largest metabolic organ of the human body with a complex tissue architecture. It is vital for blood detoxification and metabolism. Blood flows through blood vessels to the liver cells, called hepatocytes, which take up and metabolize substances and secrete bile for discharge into the intestine. How do cells interact with each other and self-organize to form a functional tissue?

For this, its three-dimensional structure must be known. The architecture of tissues and its relation to their function are still poorly understood today. Thus, an interdisciplinary team of biologists, physicists and mathematicians at the MPI-CBG, the MPI-PKS, and the TU Dresden aimed to create a new model of the liver that would be fit to explain how cells collectively form liver tissue and, therefore, a healthy organ.

A structural model of the liver lobule was made and hand-drawn by the anatomist Hans Elias in 1949. Since then, very little progress has been made. To solve this outstanding problem, the Dresden researchers computationally reconstructed the three-dimensional geometry of the tissue from microscopy images of mouse liver tissue and analyzed it applying concepts from Physics.

Surprisingly, given the amorphous appearance of liver tissue, the researchers found that the hepatocytes follow a liquid-crystal order, similar to the one making electronic displays. Liquid crystals are less structured than crystals but are more organized than molecules in a liquid.

Hernán Morales-Navarrete, postdoctoral researcher in the lab of MPI-CBG director Marino Zerial, explains: “Our results suggest that liver cells and sinusoids, which are the smallest blood vessels in the body, communicate with each other in both directions: The blood vessels instruct the hepatocytes and the hepatocytes send signals back to the blood vessels to establish and preserve the liquid-crystal order.

This bi-directional communication is a central part of the self-organization of liver tissue.” Such an architecture gives the tissue function and robustness against local damage.

Marino Zerial, who is also affiliated with the Center for Systems Biology Dresden (CSBD), summarizes: “We discovered novel design principles of liver tissue organization. Only if we understand how the liver tissue is formed to create a functional organ, can we understand abnormalities and malfunctions in humans better. Furthermore, our study provides a general framework, beyond the liver tissue, for clarifying the rules of how cells interact with each other and assemble into tissues.”


About the MPI-CBG
The Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) is one of over 80 institutes of the Max Planck Society, an independent, non-profit organization in Germany. 600 curiosity-driven scientists from over 50 countries ask: How do cells form tissues? The basic research programs of the MPI-CBG span multiple scales of magnitude, from molecular assemblies to organelles, cells, tissues, organs, and organisms.

About the MPI-PKS
The goal of the Max Planck Institute for the Physics of Complex Systems (MPI-PKS) is to contribute to the research in the field of complex systems in a globally visible way and to promote it as a subject. Furthermore, the MPI-PKS invests into passing on the innovation generated in the field of complex systems as quickly and efficiently as possible to the young generation of scientists at universities. This requires a high degree of creativity, flexibility and communication with universities. The concept rests on two pillars: in-house research and a program for visiting scientists. The latter not only covers individual scholarships for guest scientists at the institute, but also 20 international workshops and seminars per year.

About the CSBD
The Center for Systems Biology Dresden (CSBD) is a cooperation between the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), the Max Planck Institute for the Physics of Complex Systems (MPI-PKS), and the TU Dresden. The interdisciplinary center brings physicists, computer scientists, mathematicians, and biologists together. The scientists develop theoretical and computational approaches to biological systems across different scales, from molecules to cells and from cells to tissues.

Wissenschaftliche Ansprechpartner:

Prof. Marino Zerial
+49 (0) 351 210 1100
zerial@mpi-cbg.de

Originalpublikation:

Hernán Morales-Navarrete, Hidenori Nonaka, Andre Scholich, Fabián Segovia-Miranda, Walter de Back, Kirstin Meyer, Roman L Bogorad, Victor Koteliansky, Lutz Brusch, Yannis Kalaidzidis, Frank Jülicher, Benjamin M Friedrich, Marino Zerial: “Liquid-crystal organization of liver tissue” eLife, 17. June, 2019. doi: 10.7554/eLife.44860

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik
Further information:
https://www.mpi-cbg.de/de/home/

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>