Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipid Metabolism Controls Brain Development

08.05.2020

A lipid metabolism enzyme controls brain stem cell activity and lifelong brain development. If the enzyme does not work correctly, it causes learning and memory deficits in humans and mice, as researchers at the University of Zurich have discovered. Regulating stem cell activity via lipid metabolism could lead to new treatments for brain diseases.

Neural stem cells are not only responsible for early brain development – they remain active for an entire lifetime. They divide and continually generate new nerve cells and enable the brain to constantly adapt to new demands.


Cerebral organoids produced by human embryonic stem cells are organ-like cell cultures of the brain. They consist of neural stem cells (green), progenitor cells (red) and nerve cells (white).

Daniel Gonzalez-Bohorquez, UZH

Various genetic mutations impede neural stem cell activity and thus lead to learning and memory deficits in the people affected. Very little has hitherto been known about the mechanisms responsible for this.

Enzyme regulates brain stem cell activity

An international research team led by Sebastian Jessberger, professor at the Brain Research Institute at the University of Zurich (UZH), is now demonstrating for the first time that a lipid metabolism enzyme regulates the lifelong activity of brain stem cells, in a study published in Cell Stem Cell.

This enzyme – known as fatty acid synthase (FASN) – is responsible for the formation of fatty acids. A specific mutation in the enzyme’s genetic information causes cognitive deficits in affected patients.

Headed by postdoc Megan Bowers and PhD candidates Tong Liang and Daniel Gonzalez-Bohorquez, the researchers studied the genetic change of FASN in the mouse model as well as in human cerebral organoids – organ-like cell cultures of the brain that are formed from human embryonic stem cells.

“This approach allows us to analyze the effects of the defective enzyme in the brains of adult mice and during early human brain development in parallel,” explains Jessberger. The research involved altering the genetic information of both the mice and the human organoids experimentally so that the lipid metabolism enzyme exhibited the exact mutation that had been found in people with cognitive deficits.

Diminished stem cell activity reduces cognitive performance

The FASN mutation led to reduced division of stem cells, which constantly generate new nerve cells, both in mice and in human tissue. The hyperactivity of the mutated enzyme is responsible for this, since fats accumulate inside the cell, putting the stem cells under stress and reducing their ability to divide. Similar to cognitive deficits found in affected people, mice also displayed learning and memory deficits due to the mutation.

“Our results provide evidence of the functional correlation between lipid metabolism, stem cell activity and cognitive performance,” says Jessberger.

The mechanism now identified shows how lipid metabolism regulates neuronal stem cells activity and thus influences brain development. “The new discoveries regarding learning and memory deficits in people were only made possible by linking our research on animal models and in human cells,” stresses Jessberger. According to the research scientists, their methodology provides a “blueprint” for conducting detailed research into the activity of brain stem cells and their role in cognitive processes, and therefore for achieving a better understanding of poorly understood diseases.

Stem cells as a therapeutic objective for brain diseases

“In addition, we hope that it will be possible to control stem cell activity therapeutically to use them for brain repair – for example for the future treatment of cognitive disorders or in association with diseases that involve the death of nerve cells, such as Parkinson's disease or Alzheimer's disease,” says Sebastian Jessberger.

Funding
The research work was supported by an SNSF Consolidator Grant from the Swiss National Science Foundation, the European Research Council, the Dr. Eric Slack-Gyr Foundation, the Betty & David Koetser Foundation, the Neuroscience Center Zurich and a research grant from the University of Zurich.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Sebastian Jessberger
Brain Research Institute
University of Zurich
Phone +41 44 635 33 70
E-mail: jessberger@hifo.uzh.ch

Originalpublikation:

Megan Bowers, Tong Liang, Daniel Gonzalez-Bohorquez, Sara Zocher, Baptiste N. Jaeger, Werner J. Kovacs, Clemens Röhrl, Kaitlyn M. L. Cramb, Jochen Winterer, Merit Kruse, Slavica Dimitrieva, Rupert W. Overall, Thomas Wegleiter, Hossein Najmabadi, Clay F. Semenkovich, Gerd Kempermann, Csaba Földy, Sebastian Jessberger. FASN-dependent lipid metabolism links neurogenic stem/progenitor cell activity to learning and memory deficits. Cell Stem Cell. 7 May 2020. DOI: 10.1016/j.stem.2020.04.002

Kurt Bodenmüller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>