Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link between vitamin C and twins can increase seed production in crops

19.06.2012
Discovery can assist farming of low-fertility crops, say UC Riverside biochemists

Biochemists at the University of California, Riverside report a new role for vitamin C in plants: promoting the production of twins and even triplets in plant seeds.


A boost of vitamin C results in the production of twin seedlings of tobacco. Credit: Gallie Lab, UC Riverside

Daniel R. Gallie, a professor of biochemistry, and Zhong Chen, an associate research biochemist in the Department of Biochemistry, found that increasing the level of dehydroascorbate reductase (DHAR), a naturally occurring enzyme that recycles vitamin C in plants and animals, increases the level of the vitamin and results in the production of twin and triplet seedlings in a single seed.

The value of the discovery lies in the potential to produce genetically identical seedlings and increase production of high-value crops.

"The ability to increase fertility can be extremely useful when the inherent rate of fertility is low or the value of the crop is great, such as corn in which the production of multiple embryos would significantly boost its protein content," Gallie said. "The extra seedlings per seed may also enhance per-seed survival chances for some species."

Study results appear in the online international journal PLoS ONE.

Just as in humans, twins in plants can be either genetically identical or fraternal. Gallie and Chen discovered that the twins and triplets produced in tobacco plants when vitamin C was increased were true twins or triplets as they were genetically identical.

In the lab, the researchers went on to show that injecting plant ovaries with vitamin C was sufficient to produce twins or triplets and that the vitamin causes the zygote, the fertilized egg, to divide into two or even three fertilized egg cells before these cells proceed through subsequent stages of development to produce twins or triplets.

Although they used tobacco in their research, Gallie predicts vitamin C could generate twins and triplets in other plants as well.

"Because the early stages of embryo development are so conserved among plant species, we expect that vitamin C will have a similar effect in almost any plant," he said.

A question raised by the study is whether vitamin C might have a similar effect in humans. In contrast to most animals, humans cannot make vitamin C and it must, therefore, be obtained regularly from dietary sources.

"Although the development of plant and animal embryos differ in many respects, the manner in which the genetically identical twins were produced in our study is similar to that for identical human twins in that it is the very first division of the fertilized egg into two separate cells that produces the two separate embryos, resulting in two seedlings in plants or two fetuses in humans," Gallie said. "Despite the differences in the subsequent development of embryos in plants and humans, the critical effect of vitamin C is on this very first cell division."

To Gallie's knowledge, no study linking vitamin C to twins in humans has been carried out to date.

"Humans are mutants in that we lack the last enzyme in the pathway needed to produce vitamin C," he said.

Vitamin C is well known to prevent scurvy, a disease affecting collagen synthesis, iron utilization, and immune cell development. It also improves cardiovascular and immune cell function and is used to regenerate vitamin E. The vitamin is present at high levels in some fruits such as citrus and some green leafy vegetables, but present in low levels in those crops most important to humans such as grains.

Vitamin C is as essential for plant health as it is for humans. It serves as an important antioxidant, destroying reactive oxygen species that can otherwise damage or even kill cells. In plants, vitamin C is important for photosynthetic function, in controlling water usage, in providing protection against pollutants such as ozone, and promoting growth.

A grant from the University of California Agricultural Experiment Station supported the study.

Previously, Gallie and Chen, who helped develop technology to increase vitamin C in plants, showed that a boost of the vitamin can help plants defend themselves against the ravages of ozone — smog's particularly nasty component. They also showed that reducing DHAR increases a plant's responsiveness to drought conditions.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Predicting a protein's behavior from its appearance
10.12.2019 | Ecole Polytechnique Fédérale de Lausanne

nachricht Could dark carbon be hiding the true scale of ocean 'dead zones'?
10.12.2019 | University of Plymouth

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019 | Architecture and Construction

Reorganizing a computer chip: Transistors can now both process and store information

10.12.2019 | Information Technology

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>