Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link between vitamin C and twins can increase seed production in crops

19.06.2012
Discovery can assist farming of low-fertility crops, say UC Riverside biochemists

Biochemists at the University of California, Riverside report a new role for vitamin C in plants: promoting the production of twins and even triplets in plant seeds.


A boost of vitamin C results in the production of twin seedlings of tobacco. Credit: Gallie Lab, UC Riverside

Daniel R. Gallie, a professor of biochemistry, and Zhong Chen, an associate research biochemist in the Department of Biochemistry, found that increasing the level of dehydroascorbate reductase (DHAR), a naturally occurring enzyme that recycles vitamin C in plants and animals, increases the level of the vitamin and results in the production of twin and triplet seedlings in a single seed.

The value of the discovery lies in the potential to produce genetically identical seedlings and increase production of high-value crops.

"The ability to increase fertility can be extremely useful when the inherent rate of fertility is low or the value of the crop is great, such as corn in which the production of multiple embryos would significantly boost its protein content," Gallie said. "The extra seedlings per seed may also enhance per-seed survival chances for some species."

Study results appear in the online international journal PLoS ONE.

Just as in humans, twins in plants can be either genetically identical or fraternal. Gallie and Chen discovered that the twins and triplets produced in tobacco plants when vitamin C was increased were true twins or triplets as they were genetically identical.

In the lab, the researchers went on to show that injecting plant ovaries with vitamin C was sufficient to produce twins or triplets and that the vitamin causes the zygote, the fertilized egg, to divide into two or even three fertilized egg cells before these cells proceed through subsequent stages of development to produce twins or triplets.

Although they used tobacco in their research, Gallie predicts vitamin C could generate twins and triplets in other plants as well.

"Because the early stages of embryo development are so conserved among plant species, we expect that vitamin C will have a similar effect in almost any plant," he said.

A question raised by the study is whether vitamin C might have a similar effect in humans. In contrast to most animals, humans cannot make vitamin C and it must, therefore, be obtained regularly from dietary sources.

"Although the development of plant and animal embryos differ in many respects, the manner in which the genetically identical twins were produced in our study is similar to that for identical human twins in that it is the very first division of the fertilized egg into two separate cells that produces the two separate embryos, resulting in two seedlings in plants or two fetuses in humans," Gallie said. "Despite the differences in the subsequent development of embryos in plants and humans, the critical effect of vitamin C is on this very first cell division."

To Gallie's knowledge, no study linking vitamin C to twins in humans has been carried out to date.

"Humans are mutants in that we lack the last enzyme in the pathway needed to produce vitamin C," he said.

Vitamin C is well known to prevent scurvy, a disease affecting collagen synthesis, iron utilization, and immune cell development. It also improves cardiovascular and immune cell function and is used to regenerate vitamin E. The vitamin is present at high levels in some fruits such as citrus and some green leafy vegetables, but present in low levels in those crops most important to humans such as grains.

Vitamin C is as essential for plant health as it is for humans. It serves as an important antioxidant, destroying reactive oxygen species that can otherwise damage or even kill cells. In plants, vitamin C is important for photosynthetic function, in controlling water usage, in providing protection against pollutants such as ozone, and promoting growth.

A grant from the University of California Agricultural Experiment Station supported the study.

Previously, Gallie and Chen, who helped develop technology to increase vitamin C in plants, showed that a boost of the vitamin can help plants defend themselves against the ravages of ozone — smog's particularly nasty component. They also showed that reducing DHAR increases a plant's responsiveness to drought conditions.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht A study demonstrates that p38 protein regulates the formation of new blood vessels
17.07.2019 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht For bacteria, the neighbors co-determine which cell dies first: The physiology of survival
17.07.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>