Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Limitations of Super-Resolution Microscopy Overcome

07.07.2020

The smallest cell structures can now be imaged even better: The combination of two microscopy methods makes fluorescence imaging with molecular resolution possible for the first time.

With high-resolution microscopy, it is theoretically possible to image cell structures with a resolution of a few nanometres. However, this has not yet been possible in practice.


(a) Three-dimensional Ex-dSTORM of 3.2 times expanded centrioles. Measuring bar 1 micrometer. (b) enlarged section of (a). (c) Three-dimensional Ex-dSTORM of 3.1-fold expanded tubulin filaments. Measuring bar 2 micrometers. (d) and (e): enlargements of(c)

Team Markus Sauer / University of Wuerzburg

The reason for this is that antibodies carrying a fluorescent dye are usually used to label cell structures. Therefore, the dye is not located directly at the target structure, but about 17.5 nanometres away from it. Partly because of this distance error, the theoretically achievable resolution could not be achieved so far.

Publication in Nature Communications

An international research team has now overcome this hurdle. This was achieved by combining the super-resolution microscopy methods dSTORM and expansion microscopy (ExM). The journal Nature Communications presents the results.

The publication was led by a team from the Biocenter of Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany: Professor Markus Sauer, Head of the Department of Biotechnology and Biophysics, with PhD students Fabian Zwettler and Sebastian Reinhard.

Professors Paul Guichard from the University of Geneva (Switzerland) and Toby Bell from Monash University (Australia) also played a key role.

Obstacles to combining dSTORM and ExM

The dSTORM method, developed in Professor Sauer's group, achieves an almost molecular resolution of about 20 nanometers. To further increase the resolution, a combination with expansion microscopy, which has been available for a few years now, seemed promising.

In ExM, the sample to be examined is cross-linked into a swellable polymer. Then the interactions of the molecules in the sample are destroyed and the sample is allowed to swell in water. This leads to an expansion: the molecules to be imaged drift spatially apart by a factor of four.

Why the two methods could not be combined until now:

• The fluorescent dyes used for dSTORM to label the molecules did not survive the polymerization of the aqueous gel.

• A buffer solution is needed for dSTORM, but the expanded sample shrinks to its original size in such buffers.

Distance error significantly reduced

"By stabilizing the gel and immune staining only after expansion, we could overcome these hurdles and successfully combine the two microscopy methods," says Markus Sauer. As a result, the distance error melts to just five nanometers when expanded 3.2 times. This makes fluorescence imaging with molecular resolution possible for the first time.

The researchers used centrioles and structures that are composed of the protein tubulin to show how well their method works. They were able to visualise tubulin tubes as hollow cylinders with a diameter of 25 nanometres. The researchers succeeded in sharply imaging groups of three made up of tubulin structures at a distance of 15 to 20 nanometres at the centrioles. The centrioles are cell structures that play an important role in cell division.

Professor Sauer's conclusion: "For many important cell components, the combination of ExM and dSTORM now enables us to gain detailed insights into molecular function and architecture for the first time. The team therefore plans to apply the method to different structures, organelles and multiprotein complexes of the cell.

Sponsor

The work described was financially supported by the German Research Foundation (DFG) within the framework of the Collaborative Research Centre TRR 166 "ReceptorLight".

Wissenschaftliche Ansprechpartner:

Prof. Dr. Markus Sauer, Chair of Biotechnology and Biophysics, Biocenter, University of Würzburg, T +49 931 31-88687, m.sauer@uni-wuerzburg.de

Originalpublikation:

Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM), Nature Communications, July 7, 2020, Open Access, https://doi.org/10.1038/s41467-020-17086-8

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Study clarifies kinship of important plant group
05.08.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)
05.08.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>