Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lighting up the plant hormone 'command system'

23.07.2012
Light is not only the source of a plant's energy, but also an environmental signal that instructs the growth behavior of plants. As a result, a plant's sensitivity to light is of great interest to scientists and their research on this issue could help improve crop yields down the road.

Similarly understanding a plant's temperature sensitivity could also help improve agriculture and feed more people. Two new papers from Carnegie's Zhiyong Wang laboratory identify key aspects of the hormonal responses of plants to changes in light and heat in their environments. Their work is published online July 22 by Nature Cell Biology.

To have optimal exposure to sun light, plants must grow differently depending on the lighting conditions. For example, when a seed germinates underground, it must elongate its stem rapidly to reach the surface of soil; when a plant is shaded by its neighbor, it also elongate its stem to outcompete for sun light; whereas expanding leaves is the priority for plants under full sun light. On the other hand, like all organisms, plant growth and development is also regulated by internally produced chemical signals, namely hormones. How plants coordinate their responses to light and hormonal signals is an outstanding question of great interest to scientists and importance to crop yield. It is believed that identification of the central regulatory mechanism that integrates multiple environmental and hormonal signals has great potential for improving crop yield. Such a central regulatory mechanism is the focus of the two papers from the Wang lab.

The light-induced transition from a developmental pathway that leads to slim seedling with yellow folded leaves, called etiolation, to a developmental pathway that leads to short stem and expanded green leaves, called de-etoilation, has been extensively studied for many years. This research led to the discovery, 15 years ago, of the steroid hormone brassinosteroid, which is found throughout the plant kingdom and regulates many aspects of growth and development.

Mutant plants that are deficient in brassinosteroid that are grown in the dark, show features of plants grown in the light. They also have defects at many phases of the plant life cycle, including reduced seed germination, dwarfism, and sterility.

The physiological effects of brassinosteroids are very similar to those of gibberellin, another hormone. But the relationship between these two hormones has been unclear at the molecular level. Recent studies of Wang and his colleagues have elucidated the molecular pathway through which brassinosteroid alters gene expression and explored the relationship of the two hormones.

In the two Nature Cell Biology papers, Wang and his team identified key junctions between the molecular pathway that transduces the brassinosteroid signal and those for the light, temperature, and gibberellin signals. The studies explain how multiple environmental and hormonal signals regulate plant growth and development. The studies also elucidate a biochemical "command system" that integrates a wide range of signals into growth regulation.

In contrast to the widely held concept that environmental signals affect endogenous hormones to alter plant growth, the study by Wang found surprisingly that light does not affect brassinosteroid. Instead, brassinosteroid has major effects on the sensitivity of plants to light by not only altering the levels of proteins mediating light responses, but also providing an essential partner for a transcription factor, named PIF4, that is directly inactivated by the photoreceptor phytochrome. The brassinosteroid-activated BZR1 protein and dark-stabilized PIF4 protein form a complex that drives expression of genes required for the etiolation process.

By contrast, light removal of PIF4, or the absence of BZR1 caused by brassinosteroid deficiency, leads to de-etiolation and inhibition of cell elongation. The study also shows that the growth response to high temperature, known to be mediated by PIF4, also requires BZR1-PIF4 complex formation. The study therefore revealed a new function of brassinosteroid in gating the responses to light and temperature, likely according to the internal physiological conditions.

Brassinosteroid and gibberellin are two major growth-promoting hormones that induce similar growth responses in higher plants. Wang and his team demonstrate that the effects of gibberellin on cell elongation depend on the presence of brassinosteroid and active BZR1 protein in the nucleus. This is because gibberellin removes a class of inhibitory proteins, named DELLAs, which inactivate BZR1, and thereby allow BZR1 to regulate gene expression more effectively. Without brassinosteroid and BZR1, gibberellin has little effect on cell growth.

The research indicates that brassinosteroid provides an essential factor required for cell elongation growth, whereas gibberellin provides another layer of quantitative control of the activity of this factor. Because gibberellin is known to be affected by environmental conditions, such as light and stresses, and brassinosteroid level varies greatly in different organs, the interactions among PIF4, DELLAs and BZR1 appear to form the "command system" that effectively integrates information of environmental condition, endogenous situation, and developmental program into the "decision" about growth.

Taken together, this research demonstrates that the interdependent relationships between brassinosteroid, elements of the gibberellin pathway, and phytochrome-interacting factors form a "command system" of sorts, which controls key growth processes and responses to environmental signals.

"This command system seems not only to accept various inputs, but also to send branches of output signals, too, because each component acts interdependently on shared targets, but also independently on unique sets of target genes," Wang said. "This complex network contains multiple layers and controls major plant growth and developmental processes. We believe this network will be a major target for engineering high-yielding crops."

Wang's co-authors on one paper are Carnegie's Eunkyoo Oh and Jia-Ying Zhu. His co-authors on the other paper are Carnegie's Ming-Yi Bai, Jian-Xiu Shang (also of Hebei Normal University), Eunkyoo Oh, Min Fan, and Yang Bai, as well as Rodolfo Zentella and Tia-ping Sun of Duke University

Research for the two papers was supported in part by NIH, NSF, and the China Scholarship Council.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Zhiyong Wang | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Life Sciences:

nachricht When predictions of theoretical chemists become reality
22.05.2020 | Technische Universität Dresden

nachricht From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there
20.05.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>