Light Vortex

Simple stirring can influence light, according to a report presented in the journal Angewandte Chemie by Kunihiko Okano and co-workers. Dye molecules locked in a gel send out “helical” (circularly polarized) light instead of “normal” light if the solution is stirred as it gels.

If you hold one end of a rope and swing it up and down with your arm while the other end is tied to a fence, the rope forms a wave. The amplitude oscillates vertically. If you swing the rope left and right instead, the it oscillates horizontally.

If the rope runs through a narrow gap between two trees, only the vertical wave can pass through to the end of the rope. Light can also be viewed as a wave. The oscillation of ordinary light from a light bulb has no preferred direction. It varies in all directions perpendicular to the direction of propagation of the light. As the two trees do with the rope, special glasses, known as polarizing filters, allow only those light waves which oscillate in a specific plane to pass through.

The light that passes through is known as linearly polarized light. Another variation is also possible: circularly polarized light. In this case, the light wave oscillates in a helical pattern because the amplitude describes a circle around the axis of propagation. The amplitude can rotate around to the left or the right.

The shape and orientation of molecules can influence the polarization plane of light when it passes through a given substance. It is thus not surprising that some molecules that emit light (luminesce) can give off polarized light. This luminescence can be circularly polarized if the emitting molecules (luminophores) are arranged helically.

The Japanese researchers from the Tokyo University of Science and the Nara Institute of Science and Technology have now found a new twist for emitting circularly polarized light: simply stir. Why does this work? Stirring causes spiral vortexes to form in liquids, which can induce the luminophores to adopt a helical arrangement.

The researchers were even able to preserve the forcibly twisted directionality of the luminescence by causing the solution containing the luminophore molecules, a green rhodamine dye, to gel while being stirred. A gel is formed like the gelatine glaze on a cake. Below a certain temperature the molecules of a gelling agent form a loose network with cavities that contain the other components of the liquid. If the dye solution with a suitable gelling agent is cooled under stirring, the stir-induced spiral arrangement of the luminophores is maintained in the gel. Depending on the direction of stirring, the gel emits left- or right-polarized luminescence. Without stirring, the light emitted is not polarized.

Author: Kunihiko Okano, Tokyo University of Science (Japan), mailto:kokano@rs.noda.tus.ac.jp
Title: Circularly Polarized Luminescence of Rhodamine B in a Supramolecular Chiral Medium Formed by a Vortex Flow

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201104708

Media Contact

Kunihiko Okano Angewandte Chemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors