Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and nanoprobes detect early signs of infection

21.06.2013
Duke University biomedical engineers and genome researchers have developed a proof-of-principle approach using light to detect infections before patients show symptoms.

The approach was demonstrated in human samples, and researchers are now developing the technique for placement on a chip, which could provide fast, simple and reliable information about a patient. A diagnostic device based on this chip also could be made portable.

The researchers developed a silver-based nanoparticle that homes in on a specific molecular marker that spills into the bloodstream at the first stages of an infection. When light is aimed at the sample, the nanoparticle attached to a molecular marker will reflect a distinct optical fingerprint.

"We have demonstrated for the first time that the use of these nanoprobes can detect specific genetic materials taken from human samples," said Tuan Vo-Dinh, the R. Eugene and Susie E. Goodson Distinguished Professor of Biomedical Engineering at Duke' Pratt School of Engineering and director of The Fitzpatrick Institute for Photonics at Duke. He is also a professor of chemistry.

The results of the Duke experiments appear online in the journal Analytica Chimica Acta. Hsin-Neng Wang, a post-doctoral fellow in Vo-Dinh's laboratory, was the first author of the paper.

In this interdisciplinary project, the Vo-Dinh team collaborated closely with scientists at Duke's Institute for Genome Sciences & Policy (IGSP) who have developed a method of measuring the host's response to infection through RNA profiling.

The research is supported by the National Institutes of Health, the Defense Advanced Projects Agency, the Department of Defense and the Wallace H. Coulter Foundation.

In the Duke experiments, the nanoprobes are used in conjunction with a phenomenon first described in the 1970s known as surface-enhanced Raman scattering (SERS). When light, usually from a laser, is shined on a sample, the target molecule vibrates and scatters back in its own unique light, often referred to as the Raman scatter. However, this Raman response is extremely weak.

"When the target molecule is coupled with a metal nanoparticle or nanostructure, the Raman response is greatly enhanced by the SERS effect – often by more than a million times," said Vo-Dinh, who has been studying the potential applications of SERS for decades.

"This important proof-of-concept study now paves the way for the development of devices that measure multiple genome-derived markers that will assist with more accurate and rapid diagnosis of infectious disease at the point of care," said Geoffrey Ginsburg, director of genomic medicine at the IGSP, executive director of the Center for Personalized Medicine at Duke Medicine, and a professor of medicine and pathology.

"This would guide care decisions that will lead to more effective treatment and improved outcomes of antimicrobial therapy," Ginsburg said. "Point-of-care diagnostics holds great promise to accelerate precision medicine and, more importantly, help patients in limited-resource settings gain access to molecular testing."

Other members of the team were Pratt's Andrew Fales and IGSP's Aimee Zaas, Christopher Woods and Thomas Burke.

Citation: "SERS Molecular Sentinel Nanoprobes for Viral Infection Diagnostics," Hsin-Neng Wang, et.al, Analytica Chimica Acta, 5 July 2013. DOI 10.1016/j.aca.2013.05.017

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>