Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-activated antibacterial coating is new weapon in fight against hospital-acquired infections

01.04.2009
A new hard coating with antibacterial properties that has been tested by researchers at the UCL Eastman Dental Institute has been shown to kill 99.9% of Escherichia coli bacteria when a white hospital light was shone on its surface to activate it.

Miss Zoie Aiken and her colleagues presented the work at the Society for General Microbiology meeting in Harrogate today (Tuesday 31 March). The veneer-like surface is made of titanium dioxide with added nitrogen. When it is activated by white light, similar to those used in hospital wards and operating theatres, it produced a decrease in the number of bacteria surviving on the test surface.

The hospital environment acts as a reservoir for the microbes responsible for healthcare-associated infections (HCAI) and new ways of preventing the spread of these pathogens to patients are needed. Antibacterial coatings could be applied to frequently touched hospital surfaces to kill any bacteria present and help reduce the number of HCAI.

Titanium dioxide based coatings can kill bacteria after activation with UV light. The addition of nitrogen to these coatings enables photons available in visible light to be utilised to activate the surface and kill bacteria.

Commenting on the results, Miss Aiken said, "The activity of the coating will be assessed against a range of different bacteria such as MRSA and other organisms which are known to cause infections in hospitals. At present we only know that the coating is active against Escherichia coli. However, E. coli is more difficult to kill than bacteria from the Staphylococcus group which includes MRSA, so the results to date are encouraging."

"The coating has currently been applied onto glass using a method called APCVD (atmospheric pressure chemical vapour deposition)," she continued. "We are also experimenting with different materials such as plastic. As an example, the coating could be applied to a plastic sheet that could be used to cover a computer keyboard on a hospital ward. The lights in the ward will keep the coating activated, which will in turn continue to kill any bacteria that may be transferred onto the keyboard from the hands of healthcare workers."

Dianne Stilwell | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Proteins imaged in graphene liquid cell have higher radiation tolerance

10.12.2018 | Materials Sciences

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>