Lifeless cells ensure sharp vision

It was previously known that the lens of the eye largely consists of lifeless cells. In these cells, the cell nuclei and other structures have been degraded so that all that remains is a solution of proteins.

This clear fluid enables light to pass through the lens to hit the retina and create an image of what is being seen. This is how the eye functions in humans and other mammals as well.

Now scientists at Lund University have discovered another fascinating dimension of the eye's lens. They have shown that the lens in the blue acara, a common aquarium fish, activates some of its lifeless cells every morning and every evening in order to change the concentration of protein in the cell fluid. The change is hardly measurable, but its effect is of major importance.

“With this strategy, the fish get better color vision during the day and can see better in the dark at night,” says Marcus Schartau, a doctoral candidate in Professor Ronald Kröger's research team at the Department of Cell and Organism Biology at Lund University.

It is the amount of protein in the lifeless cells that makes the light refract in the right way. What happens in the morning in the blue acara eye is that the lens adapts the protein concentration so that the lens can focus light of various wave lengths (colors) at one and the same point. The fish can then see sharp color images. This is called making the lens multifocal.

In the evening the protein concentration is restored to the same level as before the morning change. The lens can then only focus a single wavelength on the retina. The eye thereby loses its ability to create sharp color images, but instead utilizes the wavelengths that are most important for night vision. This is referred to as making the lens monofocal.

This strategy, switching between the two lens types every day, is something humans lack. Our monofocal lens is simpler in construction, but thanks to our greater depth of focus, we can still see different colors in daylight.

For more information, please contact Ronald Kröger, phone: +46 46 – 222 05 96 or Ronald.Kroger@cob.lu.se.

Pressofficer: Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se;+46-46 222 7186

Media Contact

Lena Björk Blixt idw

More Information:

http://www.vr.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors