Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The life histories of the earliest land animals

22.04.2009
The fossil record usually shows what adult animals looked like. But the appearance and lifestyle of juvenile animals often differ dramatically from those of the adults.

A classic example is provided by frogs and salamanders. New discoveries from Uppsala, Cambridge and Duke Universities, published in Science, show that some of the earliest backboned land animals also underwent such changes of lifestyle as they grew up.

Professor Per Ahlberg at the Department of Physiology and Developmental Biology, Uppsala University, together with Jennifer Clack, Cambridge University, and Viviane Callier, Duke University, have studied fossil upper arm bones from the two so-called "four-legged fishes", Ichthtyostega and Acanthostega, from Greenland. These animals, which lived during the Devonian period about 365 million years ago, were among the earliest vertebrates (backboned animals) with fore- and hindlimbs rather than paired fins. They belong to the common stem group of all living amphibians, reptiles, mammals and birds.

The researchers have identified several half-grown, as well as fully grown, upper arm bones from Ichthyostega and Acanthostega, allowing them to study how the shape of the bone changed during growth. It turns out that the two animals had different life histories.

"The upper arm bone provides a lot of information about the lifestyle of the animal, because its shape gives clues to the pattern of movement and can tell us for example whether the animal lifted the front part of its body clear of the ground," says Per Ahlberg.

Ichthyostega, which has robust limbs and only a small tail fin, appears to be the more terrestrial of the two. Its forelimb becomes better adapted to supporting weight as the animal grows up. The pattern of muscle attachments on the upper arm bone changes from a "fish-like" to a "land animal-like" configuration, and the shape of the shoulder joint changes so that it becomes possible for the animal to "lock" its forelimb into a weight-bearing position.

Acanthostega has feebler limbs and a large tail fin, and seems to have been more aquatic. In this animal, there are no corresponding changes.

"The explanation is probably that both animals laid their eggs in water just like modern amphibians, which meant that the terrestrial Ichthyostega, but not the aquatic Acanthostega, needed to undergo a lifestyle transformation as it grew from larva to adult," says Per Ahlberg.

Per Ahlberg | EurekAlert!
Further information:
http://www.uu.se

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>