New life found in ancient tombs

The two new species of bacteria found growing on the walls of the Roman tombs may help protect our cultural heritage monuments, according to research published in the September issue of the International Journal of Systematic and Evolutionary Microbiology.

The Catacombs of Saint Callistus are part of a massive graveyard that covers 15 hectares, equivalent to more than 20 football pitches. The underground tombs were built at the end of the 2nd Century AD and were named after Pope Saint Callistus I. More than 30 popes and martyrs are buried in the catacombs.

“Bacteria can grow on the walls of these underground tombs and often cause damage,” said Professor Dr Clara Urzì from the University of Messina in Italy. “We found two new species of bacteria on decayed surfaces in the catacombs and we think the bacteria, which belong to the Kribbella group, may have been involved in the destruction.”

By studying bacteria that ruin monuments, the researchers hope to develop methods of protecting cultural heritage sites such as the catacombs in Rome. The two new bacterial species discovered in the tombs also have the potential to produce molecules that have useful properties, like enzymes and antibiotics.

“The special conditions in the catacombs have allowed unique species to evolve,” said Professor Dr Urzì. “In fact, the two different Kribbella species we discovered were taken from two sites very close to each other; this shows that even small changes in the micro-environment can lead bacteria to evolve separately.”

Kribbella species are found in many different locations all over the world, from a racecourse in South Africa to a medieval mine in Germany. The genus was only discovered in 1999 but since then several species have been found. The two species discovered in the Roman catacombs have been named Kribbella catacumbae and Kribbella sancticallisti.

“The worldwide existence of the genus Kribbella raises questions about the path of evolution,” said Professor Dr Urzì. “If the bacteria are very old, does the wide geographical distribution prove the genus is stable? Or have similar bacteria evolved in parallel to one another in different places? The questions are made even more interesting by the discovery of these two different bacteria in the Roman tombs.”

Media Contact

Lucy Goodchild alfa

More Information:

http://www.sgm.ac.uk/pubs

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors