Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less is more: Researchers develop a ‘molecular needle’ using a simplified biological system

15.05.2017

Minimalism is an increasingly popular lifestyle choice that encourages individuals to decrease the overall number of possessions owned and live more simply. According to minimalist philosophy, the reduction of unnecessary clutter enables one to live a more functional and purposeful existence. IMP-IMBA Group Leader and CSSB scientist Thomas Marlovits*, in collaboration with colleagues from Massachusetts Institute of Technology (MIT), discovered that a minimalist approach can also be applied to complex biological systems, such as the type III secretion system. The findings of this collaborative study have been published in the scientific journal, Nature Communications.

The type III secretion system (T3SS) is a needle-like molecular machine found in gram negative bacteria that transports pathogenic proteins from the bacteria to the human host cell thus initiating infection. The proteins in this system are tightly regulated and the regulatory elements of TSS3 vary greatly depending on the surrounding environment of the bacteria.


The type III secretion system (T3SS) is a needle-like molecular machine that gram negative bacteria use to infect cells

IMP-IMBA

For example, Salmonella, bacteria which cause food poisoning, secretes its pathogenic proteins into human gut cells. “The question we asked ourselves is: Can we remove all of the regulatory elements from this complex biological system and re-build (refactor) the needle complex using basic genetic principles?” explains Marlovits.

To accomplish this, scientists from MIT used synthetic biology to recreate the Salmonella needle complex. Using a bottom up approach, coding and non-coding DNA was replaced or altered with synthetic parts and the scientists were able to create an ultra-simplified ‘genetic island.’ The functionality of this island was then tested in laboratories in both Boston and Vienna using conventional bio-chemistry methods. The Marlovits lab then used electron microscopy to visualize the integrity of the entire system.

“Over the course of this three year study, many rounds of debugging were needed to generate a fully functional system,” explains Marlovits “this is the first time that synthetic biology has been used successfully on such a complex system. Previous systems that have been refactored contained just three or four proteins; TSS3 is comprised of over 20 proteins.”

The development of this simplified TSS3 reveals that none of the intrinsic regulatory features of the system are required to generate a functional needle complex and can be exchanged for others. Removing this regulatory “clutter” has not only resulted in the discovery of essential functional roles played by internal start site and small RNA in but has also unveiled key insights regarding the regulatory elements themselves. Regulation, while not directly involved in function, may exist to ensure the efficient utilization of cellular resources and could also increase the number of environmental conditions under which TSS3 can function.

The refactored TSS3 could serve as new tool in biotechnology. This simplified needle complex could be inserted into other bacteria and then turned-on via a built in regulatory element that acts as a molecular switch. “TSS3 could be used as a delivery device for novel agents or vaccines,” explains Marlovits “future studies will explore the possibility of placing this refactored TSS3 into new environments.”

This minimalistic approach to understanding complex biological systems could become an essential new tool for scientists at CSSB. “Understanding how the mechanisms of host pathogen interaction impact biological systems is one of the main goals at CSSB. This new approach provides us with a unique way of looking at systems that will help us discover novel elements,” stated Marlovits.

*Thomas Marlovits is a joint group leader at the the Research Institute of Molecular Pathology (IMP) and the Institute of Molecular Biotechnology (IMBA) in Vienna. He is also affiliated with the Centre for Structural Systems Biology (CSSB), the University Medical Center Hamburg-Eppendorf (UKE), and the ‘Deutsches Elektronen-Synchrotron’ DESY in Hamburg.

Original Publication:
Control of type III protein secretion using a minimal genetic system. Song M, Sukovich DJ, Ciccarelli L, Mayr J, Fernandez-Rodriguez J, Mirsky EA, Tucker AC, Gordon DB, Marlovits TC, Voigt CA.
Nature Communications; 2017 May 9;8:14737. doi: 10.1038/ncomms14737.

About the IMP:
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

About IMBA:
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research.

About the Vienna BioCenter:
The Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, education and business on a single campus. About 1,600 employees, more than 1,000 students, 93 research groups, 16 biotech companies, and scientists from more than 40 nations create a highly dynamic environment. See: http://www.viennabiocenter.org/

Media Contact at IMP:
Dr. Heidemarie Hurtl
IMP Communications
Research Institute of Molecular Pathology
+43 (0)1 79730 3625
hurtl@imp.ac.at

Media Contact at IMBA:
Ines Méhu-Blantar
IMBA Communications
IMBA - Institute of Molecular Biotechnology
+43 (1) 790 44-3628
ines.mehu-blantar@imba.oeaw.ac.at

Weitere Informationen:

https://www.nature.com/articles/ncomms14737
https://www.imp.ac.at/research/research-groups/thomas-marlovits/research/
http://imba.oeaw.ac.at/research/thomas-marlovits/

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>