Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less animal experiments on the horizon: Multi-organ chip awarded

19.10.2018

EARTO Award for Microsystem of the Fraunhofer IWS Dresden

Dresden Fraunhofer engineers have developed a so-called "multi-organ chip". This microsystem from the Fraunhofer Institute for Material and Beam Technology IWS Dresden, which has now received an "EARTO Innovation Award" in Brussels, simulates the blood circulation and the organs of animals or humans.


The illustrations show in comparison how the blood circulation in the human body (left) and the channels on the multi-organ chip (right) supply the liver, the kidneys and other organs or tissues.

© Fraunhofer IWS Dresden


The same scheme in practice on an already connected multi-organ chip with pumps and valves (small red dots) as well as chambers for organs, tissue and blood substances.

© Fraunhofer IWS Dresden

The "lab-on-a-chip" will help industry to develop new drugs and cosmetics more quickly than before. But what is even more important: "We see good opportunities to eliminate the need for many animal experiments," emphasized Dr. Udo Klotzbach, Business Unit Manager Microtechnology at Fraunhofer IWS. In addition, this system opens the door to individualized medicine a little further, in which doctors can determine an exactly fitting therapy for each patient within days instead of years.

IWS system developer Dr. Frank Sonntag explained that the latest parallel flow version of the multi-organ chip also replicates the different levels of blood circulation in organs. The "European Association of Research and Technology Organisations" considers this latest development to be groundbreaking. It expects considerable effects on economy. The association therefore awarded the multi-organ chip from Dresden the third prize in the competition for the "EARTO Innovation Awards 2018" in the category "Impact Expected" in Brussels on Tuesday, 16 October 2018.

Complete ban on many animal experiments in sight

Udo Klotzbach is convinced that "sooner or later animal experiments for the development of pharmaceuticals and cosmetics will be completely banned. The Netherlands is pioneer, other countries will follow. I therefore see great implementation potential for our system."

Industrial laboratories and research institutes around the world have been trying for a long time to find a technological alternative to animal testing. In the race for the best multi-organ chips, countries such as the USA are sometimes investing hundreds of millions in research and development. "This is a lead topic worldwide," estimates Udo Klotzbach.

The Fraunhofer IWS began developing multi-organ chips in 2009. The Dresden Institute is now further ahead than others, as the EARTO award also underscores. In the meantime, using their laboratory chips the researchers have been able to simulate numerous natural organism processes in a comparatively complex way. These include in particular distributing active substances in the bloodstream and between the organs.

Stacked foils simulate the interaction of the organs

The Dresden engineers assemble their multi-organ chips from several layers. Using a laser, they first cut the subsequent blood vessels, the chambers for organ cells and other functional elements into plastic foils. They then stack these films on top of each other, connect them and add sensors, valves, pumps, connections, mass exchangers and electronic controls. The multi-organ chip assembled in this way measures about three by ten centimeters, i.e. about the size of a pillbox.

Users from medicine, pharmacy or the beauty industry fill the "chambers" in these multi-organ chips with the cells of the liver, heart or other organs, for example. Then they start an artificial blood circulation and introduce their test substance.

In the interaction between the simulated organs, they can analyze how an animal or a human being would react to the new drug or beauty product. Such a technical replica does not completely replace the test on the living organism. However, the chip can make many animal experiments superfluous in the long run leading to market approval.

"Brain better supplied with blood than eyes"

This microfluidic system has already proven itself in numerous medical practice tests. "Our partners at Dresden University Hospital tell us that the cells tested in our chips are viable for about a month," reports Udo Klotzbach. The organ cells survive much longer in the multi-organ chip than in classical Petri dishes.
In addition, the latest parallel version of the multi-organ chip opens up better possibilities to simulate the flow processes in a biological organism more realistically.

"In the human body, the different body parts, organs and tissues, require different amounts of blood," explains Dr. Frank Sonntag, the developer behind the concept. "The brain, for example, receives much more blood than the eyes. In addition, the human organs are not connected in series but have parallel blood supplies. Therefore, the team has now connected the organ chambers on the chips with parallel channels whose flow rates can be regulated individually.

Microscopically small valves also make it possible to simulate heart attacks: Using software commands, users can block certain blood vessels to check, for example, how and in what time nerve cells react to a stroke.

"The next step is to integrate additional sensors," announces Udo Klotzbach. He is thinking, for example, of components that enable some analyses to be carried out right on the chip. "And we want to integrate machine learning concepts in order to improve the analysis results."

More about the EARTO Innovation Awards 2018: http://s.fhg.de/earto2018.

Wissenschaftliche Ansprechpartner:

Dr. Udo Klotzbach
Business Unit Manager Microtechnology
udo.klotzbach@iws.fraunhofer.de

Originalpublikation:

https://www.iws.fraunhofer.de/en/pressandmedia/press_releases/2018/presseinforma...

Markus Forytta | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

More articles from Life Sciences:

nachricht Machine learning microscope adapts lighting to improve diagnosis
20.11.2019 | Duke University

nachricht The neocortex is critical for learning and memory
20.11.2019 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>