Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leishmaniasis parasites evade death by exploiting the immune response to sand fly bites

18.08.2008
Cutaneous leishmaniasis, a disease characterized by painful skin ulcers, occurs when the parasite Leishmania major, or a related species, is transmitted to a mammalian host by the bite of an infected sand fly.

In a new study from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, scientists have discovered L. major does its damage by not only evading but also by exploiting the body's wound-healing response to sand fly bites, as reported in the August 15 issue of Science.

"This work changes the textbook picture of the lifecycle of the leishmaniasis parasite, identifying the inflammatory cell known as the neutrophil as the predominant cell involved during the initiation of infection," says NIAID Director Anthony S. Fauci, M.D.

Employing advanced microscopy techniques, which allowed real-time imaging of the skin of living mice infected with L. major, NIAID collaborators Nathan C. Peters, Ph.D., and Jackson Egen, Ph.D., found that the neutrophils—white blood cells that ingest and destroy bacteria—play a surprising role in the development of the disease.

... more about:
»Neutrophil »immune »infected »parasite

Neutrophils were rapidly recruited out of the circulating blood and into the skin of infected mice, where they swarmed around the sand fly bite sites and efficiently engulfed the parasites. But unlike many other infectious organisms that die inside neutrophils, L. major parasites appear to have evolved in a way to evade death, actually surviving for long periods of time inside the neutrophils. Eventually the parasites escape from neutrophils and enter macrophages, another immune cell population in the skin, where they can establish long-term infection.

"Parasites transmitted by sand flies to mice lacking neutrophils have more difficulty establishing an infection and surviving. This demonstrates the importance of neutrophils at the site of an infected sand fly bite and suggests the unexpected path taken by the parasite from sand fly to neutrophil to macrophage is a critical component of this disease," says Dr. Peters.

In addition, says Dr. Egen, the study reveals how neutrophils leave locally inflamed blood vessels and move into tissues; provides new information on the movement of these immune cells within damaged tissue environments and upon contact with pathogens; and provides video images revealing active neutrophil entry into areas of damaged skin.

Linda Perrett | EurekAlert!
Further information:
http://www.niaid.nih.gov
http://www.nih.gov

Further reports about: Neutrophil immune infected parasite

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>