Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leeches are DNA bloodhounds in the jungle

24.04.2012
Copenhagen Zoo and University of Copenhagen have in collaboration developed a new and revolutionary, yet simple and cheap, method for tracking mammals in the rainforests of Southeast Asia.
They collect leeches from tropical jungles, which have been sucking blood from mammals, and subsequently analyse the blood for mammal DNA. By using this method, the researchers can get an overview of the biodiversity of the mammals without having to find them. The groundbreaking results are to be published in the prestigious scientific journal Current Biology.

"It is not unusual that unknown mammals appear on local markets and end up in soup pots – without scientists knowing of it. Therefore, the new method is important to obtain knowledge of what hides in the jungle - regarding both known and unknown species. I am convinced that the new method is not only useful in Southeast Asia, but can be used in many other parts of the world where such leeches exist," explains Tom Gilbert, professor at the Centre for GeoGenetics, University of Copenhagen, and one of the initiators of the project together with Mads Bertelsen from Copenhagen Zoo.

Bloody appetite

Approximately a quarter of the world’s mammal species are threatened with extinction. However, it is difficult and expensive to monitor mammal species and populations living in impassable rainforest areas around the globe.

But Copenhagen Zoo in collaboration with Centre for GeoGenetics at the Natural History Museum of Demark, University of Copenhagen, have now developed a new, efficient and cheap method, which could be the solution to this problem. The answer is leeches. In this case, leeches (belonging to the genus Haemadipsa), which thrive in the terrestrial habitats of rainforests in large parts of Southeast Asia.

The significance of the new method is that the researchers do not have to depend on the usual tools, such as camera traps, collecting hair, faeces or tracking footprints to identify the shy mammals in the isolated rainforest areas.

These traditional methods are often cumbersome and inefficient.

Instead, the researchers collect leeches when they eagerly come to them for a blood meal. Afterwards, the leeches’ “bloody appetites” are analysed for DNA. In this way, the researchers get a genetic identification of the mammal host species, which the leeches have been sucking blood from.

Veterinarian Mads Bertelsen, Copenhagen Zoo, explains how he came on to the idea of analysing blood from leeches.

"It was in a Zoo project in Malaysia on monitoring and tracking of tapirs that we started thinking about the possibilities. Leeches in the jungle attacked one of my colleagues, and the idea was born. Then we contacted DNA researchers at GeoGenetics, University of Copenhagen, to explore the perspectives directly. First, we used 20 medical leeches fed with goat blood from the Zoo. It turned out that the leeches contained traces of goat DNA for more than four months after eating. Then we knew we were on to something," says veterinarian Mads Bertelsen from Copenhagen Zoo.

"It is an alternative way of monitoring mammalian wildlife. Leeches come to you with the blood samples, rather than you tracking down the animals in the jungle. Simple and cheap, and the sampling does not require specially trained scientists, but can be carried out by local people. I am convinced that this technique will revolutionise the monitoring of threatened wildlife in rainforest habitats," says Mads Bertelsen.

Unknown biodiversity

Next step in the project was to collect leeches from a Vietnamese rainforest and analyse them for mammal DNA. 21 of 25 leeches contained DNA traces from local mammal species. Some of them were even very rare species. Among the catch was a ferret-badger, a deer, a goat-antelope and the Annamite striped rabbit. The latter was particularly exciting, as it was first discovered in 1996, however, has not been seen in this area since, despite 2,000 nights of infrared camera trapping. Thanks to the research team, the rabbit is once again confirmed in the area.

The rainforests of Southeast Asia.

PhD Philip Francis Thomsen, from professor Eske Willerslev’s Centre for GeoGenetics at the University of Copenhagen, performed the DNA analyses that led to the groundbreaking results.

"I was very surprised and happy when I saw the first results from the DNA analyses of the leeches. We kept finding new DNA sequences from local Vietnamese mammals, only from analysing very few leeches. The new method could become very important for gaining knowledge on threatened mammals," says PhD Philip Francis Thomsen.

"It could give us insight to which mammal species are present in a given area, including new and unknown species. The recent revolution in DNA-sequencing technology, combined with a simple but innovative idea, have made this possible," explains Philip Francis Thomsen.

Contact information

Mads Bertelsen, mobile: +45 30 16 73 27
Philip Francis Thomsen, mobile: +45 27 14 20 46

Philip Francis Thomsen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch
03.04.2020 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>