Leaves of carob tree, source of chocolate substitute, fight food-poisoning bacteria

Nadhem Aissani and colleagues explain that the increase in antibiotic-resistant bacteria has fostered a search for new natural substances to preserve food and control disease-causing microbes.

They cite a need for new substances to combat Listeria monocytogenes, bacteria that caused food poisoning outbreaks in a dozen states with three deaths so far this year. Carob has attracted attention as a potential antibacterial substance, but until now, scientists had not tested it against Listeria.

Carob may be best-known as a substitute for chocolate that does not contain caffeine or theobromine, which makes chocolate toxic to dogs.

Their report describes tests in which extracts of carob leaves proved effective in inhibiting the growth of Listeria bacteria growing in laboratory cultures. Further, it offers a possible explanation for the antibacterial action.

The results were promising enough for the scientists to plan further tests of carob extracts on Listeria growing in meat and fish samples.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors