Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaf molecules as markers for mycorrhizal associations

28.08.2018

In nature, most plants establish mutual relationships with root fungi, so-called mycorrhiza. Mycorrhizal fungi facilitate the plants’ nutrient uptake and help them thrive under extreme conditions. Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, discovered that certain leaf metabolites can be used as markers for mycorrhizal associations. The discovery of foliar markers provides scientists with an easy-to-conduct tool to screen large amounts of plants for mycorrhizal associations without having to destroy them. This new tool could contribute to breeding more efficient and stress-tolerant crop varieties for sustainable agriculture.

The relationship between plants and so-called arbuscular mycorrhizal fungi is considered to be one of the most important factors for the evolution of terrestrial plants. More than 70 percent of the higher plants establish an association with these fungi, which are believed to be more than 400 million years old.


Metabolites (blue) in above-ground parts of a plant reveal a plant’s successful mutualism with mycorrhizal fungi (pink).

Ming Wang / Max Planck Institute for Chemical Ecology

The mutualistic association allows the plant to better absorb nutrients, such as phosphate. Moreover, the symbiosis makes the plants more tolerant of biotic and abiotic stresses, such as insect attack, pathogens and drought.

For plant breeders, mycorrhizal fungi are very important because global phosphate resources are limited. However, until now analysis of the fungal association was only possible by excavating the plant roots. This is not only time-consuming; it also destroys the plant.

Scientists at the Max Planck Institute for Chemical Ecology and their partners have now found substances that accumulate in the leaves when arbuscular mycorrhizal fungi successfully colonize plant roots. It has been known for a while that these substances, so-called blumenol C derivates, are produced in the roots exclusively after colonization with the mutualistic fungi. However, until now, all attempts to find a reliable and specific leaf marker have failed.

For their studies, the researchers analyzed the leaf substances with a highly sensitive technique and compared them to leaf compounds from plants that had not been able to establish fungal associations. “Through targeted and highly sensitive mass spectrometry, we were able to find mycorrhizal-specific changes also in above-ground parts of the plants,” Ming Wang from the Jena Max Planck Institute describes the unexpected findings.

Further experiments confirmed that the observed changes are related to root colonization mycorrhizal fungi. “The blumenols are most likely produced in the roots and then transported to other parts of the plants,” Martin Schäfer explains.

Most ecological interactions are highly species-specific. However, the scientists were able to show blumenol accumulation in the leaf tissues of other plant species, including important crop varieties and vegetables. The ubiquity of markers in the shoot across distant plant families is likely due to the long common history of mycorrhizal fungi and plants, suggesting that theses markers play an important role for plants colonized with arbuscular mycorrhizal fungi.

Regardless of the function of these substances, the approach provides a robust and easy-to-apply tool which has the potential to fundamentally change the future of mycorrhizal research and plant breeding. Ian Baldwin, the head of the Department of Molecular Ecology, summarizes the new possibilities: “Our diagnostic marker for the colonization with arbuscular mycorrhiza fungi can be very useful for studying mycorrhizal associations, not only for breeding programs which rely on high-throughput screenings, but also for basic research into fundamental questions about the information transferred from plant-to-plant through fungal networks.”

Phosphate is a major component of fertilizers and therefore indispensable for agriculture and food production. However, phosphate deposits are limited and are often located in areas of conflict. Experts are already talking about a pending shortage of phosphate and thus fertilizers which could lead to a global food crisis. The new screening method could help breed plants that are more able to negotiate favorable relationships with mycorrhizal fungi so as to acquire phosphate more efficiently.

In a further step, the researchers want to elucidate the role of blumenol accumulation elicited by fungal colonization and find out whether blumenols may also function as signal molecules between plant roots and leaves. They also plan to use the new method to investigate fundamental questions concerning the communication between different plants of the same species and plants of different species over a joint fungal network.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ian T. Baldwin, Tel. +49 3641 57 1100, E-Mail: baldwin@ice.mpg.de, Max Planck Institute for Chemical Ecology, Jena, Germany

Ming Wang, Tel. +49 3641 57 1124, E-Mail: mwang@ice.mpg.de, Max Planck Institute for Chemical Ecology, Jena, Germany

Originalpublikation:

Wang, M., Schäfer, M. Li, D., Halitschke, R., Dong, C., McGale, E., Paetz, C., Song, Y, Li, S., Dong, J., Heiling, S., Groten, K., Franken, P., Bitterlich, M., Harrison, M., Paszkowski, U., Baldwin, I. T. (2018). Blumenols as shoot markers for root symbiosis with arbuscular mycorrhizal fungi, eLife, DOI: 10.7554/eLife.37093
https://doi.org/10.7554/eLife.37093

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie
Further information:
http://www.ice.mpg.de/

Further reports about: Max-Planck-Institut ecology mycorrhizal mycorrhizal fungi phosphate Ökologie

More articles from Life Sciences:

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

nachricht Nerve cells in the human brain can “count”
21.09.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Fraunhofer ISE with over 60 Contributions at the European PV Solar Energy Conference and Exhibition

21.09.2018 | Trade Fair News

558 million-year-old fat reveals earliest known animal

21.09.2018 | Earth Sciences

Neutrons produce first direct 3D maps of water during cell membrane fusion

21.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>